An Implementation of the HITS Algorithm for
LAGraph

Aurko Routh
December 9, 2023

Abstract

In this study, we introduce a detailed implementation of the Hyperlink-Induced
Topic Search (HITS) algorithm within the LAGraph framework, and we bench-
mark its performance against the LAGraph implementation of the PageRank
algorithm using a suite of social network matrices.

1 Introduction

The Hyperlink-Induced Topic Search (HITS) algorithm, initially proposed by Jon Klein-
berg in 1999, represents a cornerstone in the field of web link analysis. Conceptualized
in the early days of the World Wide Web, the HITS algorithm emerged as a pioneering
method for determining the relative ”authority” and "hub” values of web pages. An
authority is a page containing valuable information on a specific topic, while a hub
is a page that links to multiple authorities. The reciprocal relationship between hubs
and authorities allows the HITS algorithm to effectively rank web pages based on their
topical relevance and interconnectedness.

The burgeoning volume of web data and the increasing complexity of web structures
necessitate efficient and scalable methods for executing graph-based algorithms like
HITS. In this scenario, SuiteSparse GraphBLAS emerges as an essential tool. SuiteS-
parse GraphBLAS, a specific implementation of the GraphBLAS API, excels in handling
sparse matrices, a key aspect of graph computations. GraphBLAS is a specification that
defines standard building blocks for graph algorithms in the language of linear algebra.
Combined with LAGraph, a library built on SuiteSparse GraphBLAS; it provides algo-
rithms, utilities, and best practices for graph analytics, enhancing the accessibility and
efficiency of complex graph algorithms.

The LAGraph library further extends these capabilities. It offers a collection of
algorithms, utilities, and best practices for graph analytics, making complex graph
algorithms more accessible and efficient. The integration of SuiteSparse GraphBLAS
into LAGraph paves the way for more efficient graph analytics, especially for algorithms
like HITS, which inherently depend on matrix operations.

This paper aims to explore the implementation of the HITS algorithm within the
LAGraph library using GraphBLAS. We intend to demonstrate how the abstract alge-
braic operations defined in GraphBLAS can be utilized to realize the iterative calcula-
tions of the HITS algorithm. By doing so, we expect to achieve a more scalable and

1



efficient approach to web link analysis, suitable for the vast and growing graph datasets
of today’s internet landscape.

2 Algorithm Explained

The central idea of HITS is rooted in the observation that some web pages (author-
ities) are valuable sources of information, while others (hubs) serve as aggregators of
these resources. The algorithm operates on a directed graph where nodes represent web
pages, and edges denote hyperlinks between them. Through an iterative process, each
node is assigned two scores: an authority score, signifying the value of the information
contained within the page, and a hub score, indicating the quality of its links to au-
thority pages. These scores are updated iteratively, with each node’s authority score
being determined by the sum of the hub scores of pages linking to it, and each hub score
computed from the authority scores of the pages it links to. Throughout the iterative
process, the hub and authority scores undergo normalization to maintain consistency.
Convergence for the hub and authority scores is achieved when the absolute value of
the difference between these scores, across consecutive iterations, falls below a prede-
termined tolerance threshold. The pseudo-code provided below offers a representation
of this algorithm’s standard implementation.

Algorithm 1 HITS Algorithm
1: Input: Graph G(V, E') with vertices V' and edges F
2: Output: Hub scores h(v) and Authority scores a(v) for each vertex v € V
3: procedure HITS(G, tolerance, maxIterations)
4: Initialize h(v) <— 1 for all v € V

5: Initialize a(v) « 1 for all v € V

6: Initialize iteration < 0

7 Initialize converged <— False

8: while not converged and iteration | mazxlterations do
9: hoa(v) <= h(v) for all v € V

10: aoa(v) < a(v) for allv € V

11: for each vertex v € V do
12: a(v) <= D, eNeighbors(o) Mtold (1)

13: h(?)) A ZuENeighbors(v) a01d<u>

14: end for
15: Normalize a(v) for all v € V
16: Normalize h(v) for all v € V

17: Check for convergence based on tolerance
18: iteration <— iteration + 1

19: end while
20: end procedure




3 Algorithm implementation

This code implements the Hyperlink-Induced Topic Search (HITS) algorithm using the
SuiteSparse GraphBLAS API.

The function LAGr _HITS is defined to calculate the hub and authority scores of nodes
in a graph. It takes several parameters, including pointers to vectors for hubs and
authorities, the graph G, tolerance for convergence tol, maximum number of iterations
itermax, and a message string msg.

int LAGr_HITS(
GrB_Vector * hubs,
GrB_Vector* authorities,
int * iters,
const LAGraph_Graph G,
float tol,
int itermax,
char *msg

) o

The code checks the structure of the graph G. If the graph is undirected or has a
symmetric structure, it uses the adjacency matrix G->A to store the transpose matrix.
Otherwise, it uses the pre-cached transpose adjacency matrix G->AT.

GrB_Matrix AT ;
if (G->kind == LAGraph_ADJACENCY_UNDIRECTED ||
G->is_symmetric_structure == LAGraph_TRUE)

{

AT = G—>A ;
}
else
{

AT = G—>AT ;

LG_ASSERT_MSG (AT != NULL,

LAGRAPH_NOT_CACHED, "G->AT is required") ;

}

It initializes the number of nodes n, hub and authority vectors h and a, and their
previous values h_old and a_old. It sets the initial values of hubs and authorities to
1/n.

GRB_TRY (GrB_Vector_new (&h_old, GrB_FP32, n)) ;
GRB_TRY (GrB_Vector_new (&a_old, GrB_FP32, n)) ;
GRB_TRY (GrB_Vector_new (&h, GrB_FP32, n));
GRB_TRY (GrB_Vector_new (&a, GrB_FP32, n)) ;

float defaultValue = 1.0/n;
GRB_TRY(GrB_assign(a, NULL, NULL, defaultValue, GrB_ALL, n, NULL));
GRB_TRY(GrB_assign(h, NULL, NULL, defaultValue, GrB_ALL, n, NULL));

3



We then calculate the number of non-zero entries in both the in-degree and out-
degree vectors. We can assume for this implementation the in-degree and out-degree
vectors are cached in the LAGraph object. Depending on if the sum of these 2 entries
is greater than one-sixteenth of the number of nodes in the graph, we will be using a
different internal kernel for the hubs and authorities calculation.

int indegree, outdegree;

GrB_Vector_nvals(&indegree, G->in_degree);
GrB_Vector_nvals(&outdegree, G->out_degree);

bool flag = (indegree + outdegree) > n/16.0;

The loop starts with initializing the iteration counter and the variable rdiff, which
is used to track the difference between the scores in successive iterations for convergence
checking.

for((xiters) = 0; (xiters) < itermax && rdiff > tol; (*xiters)++) {

3

For each iteration, matrix-vector multiplications are used to update the hub and
authority scores: a = AT - hyq and h = A - agq, where A is the adjacency matrix, and
AT its transpose. The following code represents two possible branches to compute the
hubs and authorities values. In the first case, we force the h and a vectors to 0 and
use the accumulator operator when performing the matrix multiplication. This allows
us to avoid computing the sparsity pattern overlap between vectors, which is more
efficient for dense or semi-dense graphs. For extremely sparse graphs, we can perform
the matrix-vector multiplication while only storing the present entries in the h and a
vectors. This design choice will result in a different internal algorithm being used for
the sparse case.

if (flag) {
//a =0
GRB_TRY(GrB_assign(a, NULL, GrB_PLUS_FP32, 0.0, GrB_ALL, n, NULL));
//h =0

GRB_TRY (GrB_aSSign (h, NULL, GrB_PLUS_FP32, 0.0, GrB_ALL, n, NULL));

// a+= AT . h

GRB_TRY(GrB_mxv(a, NULL,NULL, LAGraph_plus_second_fp32, AT, h_old, NULL));

// h+=A . a

GRB_TRY (GrB_mxv(h, NULL,NULL, LAGraph_plus_second_fp32, G->A, a_old, NULL));
} else {

// a=AT . h

GRB_TRY(GrB_mxv(a, NULL,NULL, LAGraph_plus_second_fp32, AT, h_old, NULL));

// h=A.a

GRB_TRY (GrB_mxv(h, NULL,NULL, LAGraph_plus_second_fp32, G->A, a_old, NULL));



The function employs the L.L1 Norm for normalizing the hub and authority scores.
Although Kleinberg’s original algorithm utilizes the L2 Norm, this implementation
aligns with the NetworkX Python implementation of the HITS algorithm, which adopts
the L1 Norm for normalization in each iteration. The verification of the algorithm’s
correctness was conducted by comparing the output hub and authority scores against
those generated by the NetworkX implementation.

float sumi;

// sumA = sum(a)

GRB_TRY (GrB_reduce (&sumA, NULL, GrB_PLUS_MONOID_FP32, a, NULL));

a /= sumA

GRB_TRY(GrB_assign(a, NULL, GrB_DIV_FP32, sumA, GrB_ALL, n, NULL));

float sumH;

// sumH = sum(h)

GRB_TRY(GrB_reduce(&sumH, NULL, GrB_PLUS_MONOID_FP32, h, NULL));

// h /= sumH

GRB_TRY(GrB_assign(h, NULL, GrB_DIV_FP32, sumH, GrB_ALL, n, NULL));

The loop checks for convergence by calculating the sum of the absolute differences
between the new and old scores for both hubs and authorities. The convergence criterion
is that this sum divided by two (rdiff) is less than the specified tolerance (tol).

// a_old -= a

GRB_TRY (GrB_assign(a_old, NULL, GrB_MINUS_FP32, a, GrB_ALL, n, NULL));
// a_old = abs(a_old)

GRB_TRY(GIB_apply (a_old, NULL, NULL, GrB_ABS_FP32, a_old, NULL));

// rdiff = sum(a_old)

GRB_TRY(GrB_reduce (&rdiff, NULL, GrB_PLUS_MONOID_FP32, a_old, NULL));
// h_old -=h

GRB_TRY (GrB_aSSign (h_old, NULL, GrB_MINUS_FP32, h, GrB_ALL, n, NULL));
// h_old = abs(h_old)

GRB_TRY (GrB_apply (h_old, NULL, NULL, GrB_ABS_FP32, h_old, NULL));

// rdiff += sum(h_old)

GRB_TRY (GrB_reduce (&rdiff, GrB_PLUS_FP32, GrB_PLUS_MONOID_FP32, h_old, NULL)) ;
// rdiff = rdiff/2

rdiff /= 2;

4 Performance Benchmark

In this analysis, we explore the performance of two principal link analysis algorithms,
Hyperlink-Induced Topic Search (HITS) and PageRank, as applied to a suite of social
network matrices. These matrices, representative of complex social networks, serve
as a testbed to evaluate the computational efficiency and scalability of the algorithms
implemented within the LAGraph framework.

PageRank, known for its application in search engine ranking, assigns a global score
to each page in the graph based on the stationary distribution of a random walk. It



essentially measures the likelihood of arriving at a particular page through random
clicks.

The experiments were conducted on a system with 24 CPUs, leveraging parallel
processing capabilities. The following table represents the results of the performance
test:

Table 1: Comparison of LAGraph HITS and PageRank Algorithms

Dataset Runtime (seconds) Iterations until convergence Time per iteration (seconds)
HITS PageRank HITS PageRank HITS PageRank

GAP Twitter 220.279 29.302 70 22 3.15 1.33

GAP Kron 407.086  66.6646 33 13 12.34 5.13

GAP Road 33.7223 1.857 295 39 0.11 0.048

GAP Web 363.293  15.8632 319 32 1.14 0.50

From the performance data, it is evident that HITS typically exhibits longer run-
times in comparison to PageRank. This can largely be ascribed to the algorithmic
composition of HITS, which necessitates a pair of matrix multiplications per iteration
to update both hub and authority scores. PageRank, conversely, requires only a single
matrix multiplication per iteration to update page scores.

Additionally, the iterative nature of these algorithms highlights another dimension
of performance. HITS generally demands a greater number of iterations to achieve
convergence across all the datasets examined. This characteristic, coupled with the
more computationally intensive nature of its iterations, accounts for the observed per-
formance disparity.

In the comparison of the LAGraph HITS and PageRank algorithms, we observe that
the HITS algorithm generally requires roughly twice the amount of time per iteration
compared to the PageRank algorithm, which is consistent with our observations above.

References

[1] Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Jour-
nal of the ACM, 46(5), 604-632.

[2] Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation
ranking: Bringing order to the web. Stanford InfoLab.

[3] Mattson, T. G., Bader, D. A., & Kepner, J. (2013). GraphBLAS: Graph algorithms
in the language of linear algebra. ACM SIGPLAN Notices, 48(8), 121-132.

[4] Davis, T. A., & Hu, Y. (2011). The University of Florida Sparse Matrix Collection.
ACM Transactions on Mathematical Software, 38.



	Introduction
	Algorithm Explained
	Algorithm implementation
	Performance Benchmark

