TEXAS A&M UNIVERSITY

Engineering

AlM

Maximum Matching in Bipartite Graphs
using LAGraph

Christina Koutsou, Dr. Timothy Davis, Department of Computer Science & Engineering, Texas A&M University

ARISTOTLE
UNIVERSITY
OF THESSALONIKI

Background and Motivation

Many graph algorithms are usually described periphrastically, instead of
realizing the underlying linear algebra operations performed. LAGraph is an
open-source selection of graph algorithms implemented using GraphBLAS,
a parallel and efficient framework for sparse matrices operations on an
extended algebra of semirings. The semiring operations can be chosen from
an extensive list (f.1. addition, min, max, multiplication, first value etc.) and
the usage of descriptors, such as considering only the structure of a matrix
and not 1its values, further increases flexibility and performance.

One group of algorithms that LAGraph currently misses 1s the one that
concerns bipartite graphs. These types of graphs are very useful to solve
problems between two types or groups of objects, clearly showing their
relationship with each other. Hence, bipartite graphs excel at solving
matching problems, such as assigning tasks to workers, and these types of
problems are frequently found in economics, biology, transportation and
many more fields. One of the most popular issues 1s the maximum matching
problem which refers to finding the maximum number of independent pairs
between sets. This project aims to implement the paper “Distributed-Memory
Algorithms for Maximum Cardinality Matching in Bipartite Graphs™ by Dr.
Ariful Azad and Dr. Aydin Bulug¢ using GraphBLAS, as the algorithm favors
parallelism and already makes use of linear algebra abstractions.

Algorithm

Most maximum matching algorithms rely on Depth-First Search (DEFS),
meaning following one path at a time. This method 1s sequential and, thus,
can be very slow for large matrices. Breadth-First Search, however, is
highly parallelizable, as 1t provides the capability of exploring many paths
simultaneously. But the problem that arises from this 1s how can we ensure
that there are no 1tems with the same match, or, in other words, how can we
ensure that the paths are disjoint? Let’s have a closer look at the algorithm

and how that 1s achieved.

Consider this example of a bipartite graph. The
graph consists of two sets, the rows and the
columns, as denoted 1n the adjacency matrix. The
- matches are recorded from the column’s
& perspective. At each iteration, till there are no
paths left, we begin from the unmatched
columns and perform a single level of BFS.
For each row, the parent with the minimum id
is chosen and every child that stems from the
BFS is marked as visited, in order not to be
considered in other paths later on. This way,
the paths stay independent. In the example, all
rows are unmatched in the beginning, so we end up with the matches shown

in bold in Figure 2.

rl cl

r3 g3

r4<} O c4

Figure 1: Bipartite graph

1%
2
3
4.
)
6.
o
8

9:
10:
i £
12:
13:
14:
15:
16:
17
18:
19:
20:
21:
22;

232
24:
29

26:
20
28:

1 c1 Since there are still paths to be explored, the
algorithm continues with the next iteration. This
time, the only unmatched column 1s c4, so the
result of the single BFS step includes only r4.
However, r4 is already matched, hence we dive
deeper 1n this path and get redirected to the mate
of r4, c3. The only unvisited node stemming from
its BFS 1s r3, which 1s again matched. We
continue traversing the path in the same fashion
until we find an unvisited and unmatched row- in
our case, r2. This path 1s now marked as finished

and since there are no other paths at the mo-
ment the algorithm moves to updating the mates c1

of the columns and rows respectively.

The unmatched row of each path 1s matched to its

parent, which 1s the first parent column c2
encountered depth-wise. Afterwards, the rows

previously matched with these columns are

r2 c2

r3 c3

r4 Q c4

Figure 2: First iteration matches

matched with their parents etc. As a result, in the 3 c3
presented example, we end up with the match

shown 1n Figure 3 instead.

Essentially, the algorithm explores alternate r4 c4

paths by reversing an already traversed path
to see if one of the already matched columns
encountered in the path has at least one free
child to be matched with instead.

Figure 3: Alternate matchings,
Maximum Matching of the
Bipartite graph

Implementation

procedure MCM-DIST(A, mate., mate,)

repeat do
mr < -1 GrB_vector clear(parentsR);
path, < -1
fe < an empty sparse vector of size n of type VERTEX

for.z = IND(mateC) do GrB_Vector_apply IndexOp_UDT(frontierC,
if mate.[i] = -1then ¢ .00 "NULL, initFrontierOp, I, &y, GrB. DESC._RSC):
feli] < VERTEX(4,1)
while f. # ¢ do
> Step 1: Explore neighbors of column frontier (one step of BFS)
fr < SPMV(A, f., SR=(select2nd, minParent)) | GrB_mxv(frontierR, parentsR, NULL,
> Step 2, 3, 4: Select unvisited, matched, and}nmatched row vertices MinParent_2nd_Semiring
fr < SELECT(f,, 7, = -1) A, frontierC, GrB_DESC_RSC);
Tpr < SET(WT, PARENT(fT-)) GrB_Vector_apply(parentsR, frontierR, NULL, getParentsOp, frontierR,GrB_DESC_S));

uf, < SELECT(f,, mate, = -1) GrB_Vector_assign(ufrontierR, mateR, NULL, frontierR, GrB_ALL, nrows, GrB_DESC_RSC));

fr < SELECT(fT-, mate, ;é -1) GrB_Vector_assign(frontierR, mateR, NULL, frontierR, GrB_ALL, nrows, GrB_DESC_RS));
if uf, # ¢ then

> Step S: Store endpoints of newly discovered augmenting paths

t. + INVERT(ROOT(uf,)) GrB_Vector_apply to get roots, GxB_Vector_unpack on roots of ufR, GrB_Vector_build tc

path. < SET(path.,t.) GrB_Vector_assign(pathC, pathUpdate, NULL, pathUpdate, GrB_ALL, ncols, GrB_DESC_S);

> Step 6: Prune vertices in trees yielding augmenting paths
fr <= PRUNE(f,, ROOT(uf;)) if ufR != empty: get roots of fR and their mates and create a vector v(i) = j,

> Step 7: Construct next frontier
SET(PARENT(f), mate,)
fe < INVERT(f)

> Step 8: Augment matching by all augmenting paths discovered in this phase
AUGMENT(path., 7, mate,, mate.)
until an augmenting path is discovered in the current phase while (npaths);

entries stemming from the same paths; invert v to move entries to their final

l:
2
3
4.
5
6.
7
8
9

10:

where | Is the mate of the first row of fR that has i as root; mask with tc to remove

positions on fC; build tuple of fC from v with indices as parents and values as roots
If ufR == empty: update parents of fR; invert fR using mates as indices; assign to fC

procedure AUGMENT(path., 7, mate,, mate.)
Ve $— Sparse vec m —~by removing entries with -1
while v. # ¢ do while (npaths); pathC is already sparse
Vp < IN VERT(’UC) GxB_Vector_unpack_CSC on pathC; GxB_Vector_pack CSC vr
(V)% SET(’UT, 7T7~) GrB_Vector_assign(vr, vr, NULL, parentsR, GrB_ALL, nrows, GrB_DESC_S);

Ve < INVERT (’UT-) GxB_Vector_unpack CSC on vr; GxB_Vector_pack CSC pathC

/

ET() GrB_Vector_assign(pathCopy, pathC, NULL, mateC, GrB_ALL,
Ve S Uc, matec ncols, GrB_DESC_RS)):

ma,tec < SET(ma,t607 ’UC) GrB_Vector_assign(mateC, pathC, NULL, pathC, GrB_ALL, ncols,
GrB_DESC_S)):

mate’r‘ < SET(ma,ter, U'r') GrB_Vector_assign(mateR, vr, NULL, vr, GrB_ALL, nrows,
/ GrB_DESC_S)):
Ve €— U, GrB_Vector temp = pathC;
pathC = pathCopy;

pathCopy = temp;

|
Comparison of execution times of Maximum Matching using l
GraphBLAS and MATLAB

B GraphBLAS | MATLAB

58257.0892%
%751.92012
1000
0

1000
v
QL
1=
= 2021498077

A 107.2263208
10 14.055764

3745024115

com-Youtube
1,134,890 x 1,134,890
nnz: 5,975,248

|
com-LiveJournal |
3,997,962 x 3,997,962 ’
nnz: 69,362,378 |

com-Orkut
3.072.441 x 3.072.441
nnz: 234,370,166

Speedup: (1) x4 times faster, (2) x417 times faster, (3) x199 times faster

References

e Distributed-Memory Algorithms for Maximum Cardinality Matching in
Bipartite Graphs by Ariful Azad and Aydin Bulug

e GraphBLAS repository and User Guide:
https://github.com/DrTimothyAldenDavis/GraphBLLAS

e [AGraph repository: https://github.com/GraphBLAS/ILAGraph

PhDPosters.conm’

Your Research Poster, Printed For Less

https://github.com/DrTimothyAldenDavis/GraphBLAS
https://github.com/GraphBLAS/LAGraph

