
Maximum Matching in LAGraph
A guide to the algorithm and its implementation

Christina Koutsou
ECE, Aristotle University of Thessaloniki

github: @kchristin22

https://github.com/kchristin22/

1 About
Many graph algorithms are usually described periphrastically, instead of realizing the underlying linear

algebra operations performed. LAGraph [5] is an open-source selection of graph algorithms implemented
using GraphBLAS [3], a parallel and efficient framework for sparse matrix operations on an extended algebra
of semirings. The semiring operations can be chosen from an extensive list (f.i. addition, min, max, multipli-
cation, first value etc.) and the usage of descriptors, such as considering only the structure of a matrix and not
its values, further increases flexibility and performance.

One group of algorithms that LAGraph currently misses is the one that concerns bipartite graphs. These
types of graphs are very useful for solving problems between two types or groups of objects, clearly showing
their relationship with each other. Hence, bipartite graphs excel at solving matching problems, such as assign-
ing tasks to workers, and these types of problems are frequently found in economics, biology, transportation,
and many more fields. One of the most popular challenges is the maximum matching problem which refers
to finding the maximum number of independent pairs between sets. This project aims to implement the paper
“Distributed-Memory Algorithms for Maximum Cardinality Matching in Bipartite Graphs” by Dr. Ariful
Azad and Dr. Aydın Buluç [1] using GraphBLAS, as this algorithm favors parallelism and already makes use
of linear algebra abstractions.

2 High-level explanation of the algorithm
Most maximum matching algorithms rely on Depth-First Search (DFS), meaning following one path at a

time. This method is sequential and, thus, can be very slow for large matrices. Breadth-First Search, however,
is highly parallelizable, as it provides the capability of exploring many paths simultaneously. But the problem
that arises from this is how can we ensure that there are no items with the same match, or, in other words, how
can we ensure that the paths are disjoint? Let’s have a closer look at the algorithm and how that is achieved.

Figure 2.1: Bipartite graph,
initial matching

Consider this example of a bipartite graph. The graph consists of two
sets, the rows and the columns, as denoted in the adjacency matrix. The
matches are recorded from the perspective of the column. At each itera-
tion, till there are no paths left, we begin from the unmatched columns and
perform a single level of BFS. For each row, the parent with the minimum
id is chosen, and every child that stems from the BFS is marked as vis-
ited, in order not to be considered in other paths later on. This way, the
paths remain independent. In the example, all rows are unmatched in the
beginning, so we end up with the matches shown in bold in Figure 2.2.

Since there are still paths to be explored, the algorithm continues with
the next iteration. This time, the only unmatched column is c4, so the result
of the single BFS step includes only r4. However, r4 is already matched,
hence we dive deeper in this path and get redirected to the mate of r4, c3.
The only unvisited node that originates from its BFS is r3, which is again
matched. We continue traversing the path in the same fashion until we find
an unvisited and unmatched row- in our case, r2. This path is now marked

as finished and since there are no other paths at the moment, the algorithm moves to updating the mates of
the columns and rows respectively.

The unmatched row of each path is matched to its parent, which is the first of its parents encountered

2

depth-wise, before marked as visited, and should be the last column visited in this path. Afterwards, the
rows previously matched with these columns are matched with their parents, etc. As a result, in the presented
example, we end up with the match shown in Figure 2.3 instead.

Essentially, the algorithm explores alternate paths by reversing an already traversed path to see if one
of the already matched columns encountered in the path has at least one free children to be matched with
instead. If so, it concedes its previous match to another previously matched parent or to the unmatched root
of the path.

Figure 2.2: Matching after first iteration Figure 2.3: Alternate and final matching

3 Implementation
3.1 Helper functions

GraphBLAS is an API designed to handle the mathematical characteristics of a graph and seeks to convert
graph operations into linear algebra expressions. Even though the pseudocode already incorporates this type
of operations, the helper functions defined in a mathematical way can be complicated to implement.

To begin with, there are two different kinds of SET(y,x) operations used in this algorithm. The first kind
is used to update and augment the parents of the visited rows, the path and the mate vectors, while the latter
is used to set the parents of the R frontier to their mates and inside the augment function, when setting ur

and u
′
c. In GraphBLAS, these two operations are both equivalent to assignments but with different masks.

For the update and augment operation, the mask is the same as the input’s structure in order to only update
entries present in both input and output and insert entries in the output, while the rest of the output’s positions
stay unaffected. In the second case of SET, the mask matches the output’s structure as the purpose is to only
update its current entries, without adding new ones.

The SELECT operation is more straightforward, relying on an assignment with the equivalent mask and
descriptor.

The semiring is also similar with that described in the paper, using two User-Defined Operations, as the
VERTEX type introduced in the paper is not a standard C variable type and GraphBLAS cannot handle it
directly.

INVERT is performed by extracting the tuples of a vector and building a new one with indices and val-
ues swapped, using GrB_Vector_extractTuples and GrB_Vector_build respectively. In some cases,
GrB_Vector_build is needed to handle duplicates in values that would become duplicate indices in the

3

3.1. Helper functions 4

inverted version. Similarly to the paper, the binary operation used for the duplicates is FIRST, which is
an extension to the specification [4] as it violates the requirement of this operation being associative. The
output vector must be cleared before using GrB_Vector_build . SuiteSparse’s version of GraphBLAS
[6] offers an extension to the API called GxB_Vector_unpack_CSC , which provides a faster way to ob-
tain vector data in CSC format, leaving the vector empty afterwards. To mimic this behavior when using
GrB_Vector_extractTuples , the vector is cleared after the operation is performed. The reverse op-

eration, GxB_Vector_pack_CSC , does not allow any duplicate indices to be present, so, in those cases,
GrB_Vector_build is used instead. GxB_Vector_pack_CSC takes ownership of the provided data, while
GrB_Vector_build copies them. Thus, when the tuple lists need to be retained, GrB_Vector_build is

preferred. GxB_Vector_pack_CSC has no requirement of emptying the vector priorly and discards previ-
ously stored data.

The PRUNE operation would typically involve three INVERT and one NAND operation. The two vectors
to be compared are inverted to find common values, which are then discarded, and the output is inverted again
to obtain the final result. However, the implementation modifies this procedure slightly to reduce the required
work (See 3.2).

Name Operation GraphBLAS equivalent

SET
Update and Augment: for each i∈x: GrB_Vector_assign(y, x, NULL, x,

y[i] = x[i] GrB_ALL, n, GrB_DESC_S))
Assign: for each i∈y: y[i] = x[i] GrB_Vector_assign(y, y, NULL, x,

GrB_ALL, n, GrB_DESC_S)

SELECT
for each i∈x: if (y[i] not empty) z[i] = x[i] GrB_Vector_assign(z, y, NULL, x,

GrB_ALL, n, GrB_DESC_RS)
for each i∈x: if (y[i] empty) z[i] = x[i] GrB_Vector_assign(z, y, NULL, x,

GrB_ALL, n, GrB_DESC_RSC)

INVERT
[I,X] → [X,I] (No duplicates GxB_Vector_unpack_CSC(x, (GrB_Index **)&I,

and input vector not needed afterwards) (void **)&X, &Ibytes, &Xbytes,
NULL, &nvals, &jumbled, NULL)

GxB_Vector_pack_CSC(y, (GrB_Index **)&X,
(void **)&I, Xbytes, Ibytes,
NULL, nvals, true, NULL)

[I,X] → [X,I] (Possible duplicates existing GxB_Vector_unpack_CSC(x, (GrB_Index **)&I,
or input vector needed afterwards) (void **)&X, &Ibytes, &Xbytes,

NULL, &nvals, &jumbled, NULL)
GrB_Vector_clear(y)

GrB_Vector_build_UINT64(y, X, I,
nvals, GrB_FIRST_UINT64)

Table 3.1: Helper functions

3.2. Algorithm walk-through 5

3.2 Algorithm walk-through

One of the main goals of this implementation is to provide the user with a lot of flexibility when it comes
to the input and output arguments. In more detail, even though the algorithm does not require an initial
matching, such an option is given along with a flag denoting the set from whose perspective the match stands,
columns or rows. The vectors matec and mater are initialized accordingly by assigning the initial matching to
one and inverting the latter to form the other, leaving the input vector unchanged. As previously explained,
the INVERT function relies on unpacking the vector’s contents and building a new vector by swapping the
indices and values. Even though there should be no duplicate values in the built mate vector to be inverted

3.2. Algorithm walk-through 6

and, therefore, GxB_Vector_pack_CSC should be preferred, this vector cannot remain empty afterwards, so
GrB_Vector_build is used instead to create the other mate vector. On the same note, as both mater and

matec are computed during each iteration, they are both returned to the user, avoiding any limitation or extra
work needed from the user’s side.

Similarly to the pseudocode, at the beginning of each iteration of the outer loop, a column frontier from
the unmatched columns is constructed. This is accomplished by applying an index operator on a full vector to
create the tuples and discarding those corresponding to matched columns. If this set is not empty, a single step
of Breadth-First-search is performed using the same semiring mentioned in the paper. GraphBLAS allows
for a masked application of the semiring so only unvisited children remain in the R frontier. To distinguish
already matched children from unmatched ones for the SELECT operations that follow, the mater vector is
applied as a structural mask and the old values of the outputs are wiped out or updated, as a result of the
’replace’ descriptor. For efficiency, a copy of a trimmed mater vector is stored, containing only the matches
of the nodes in the current R frontier.

If any unmatched rows are found in these paths, these matches need to be stored and the corresponding
paths terminated. Firstly, the roots of the paths are extracted from the unmatched R frontier and later inverted
to update the pathc vector.

The PRUNE operation would, at this point, include two INVERT and two NAND operations. In more
detail, after extracting the roots of the fr vector through a call to GrB_Vector_apply , this vector would
be inverted, masked with the vector containing the latest update of pathc to exclude the latest visited rows
stemming from the same column, and then inverted again to mask the R frontier and obtain its pruned version.
Subsequently, the parents of the R frontier would have to be set to their column mates, and these parents
would be used to invert the R frontier and form the new C frontier. However, the current implementation
takes advantage of the fact that PRUNE contains an INVERT operation on the R frontier and the C frontier’s
creation depends on inverting the R frontier, and, hence, these operations are merged. For pruning, we care
about the values of the roots and not the row indices on which they reside, and since we would later have
to set these row indices to their column mates, we can combine these steps when inverting the root fr vector:
Both the root fr vector and the vector storing the column mates of the current R frontier are unpacked in order.
These two vectors have entries in the same positions as they stem from the R frontier. Thus, we can build the
following vector:

root f RIndexes(j) = i, where (i,j) = (parentC, rootC) of the new C frontier

It is evident now that, after masking with the latest update of pathc, which in turn stems from inverting the
roots of ufr, we get a pruned R frontier that follows the aforementioned formula. In other words, this vector
contains all the information needed to create the new C frontier. Firstly, the vector is inverted so the positions
match the mates of the parents of the pruned R frontier. Then, an index unary operation is applied where the
tuples of the C frontier are formed as follows:

void *buildfCTuples(vertex *z, uint64_t *x, uint64_t i, uint64_t j, const void *y)
{

z->parentC = i;
z->rootC = *x;

}

If ufr is empty, the procedure is simplified by first applying an operator on the R frontier to set the parents
to their mates and then unpacking the vector to get its values. The mates of the parents are acquired by the

3.3. Push-Pull optimization 7

values in the vector of the current row mates- which has the same structure as the R frontier- and they are also
used as the indices for the C frontier when the latter is packed.

After all rows are visited, the AUGMENT algorithm is executed. The INVERT functions happening
here rely exclusively on GxB_Vector_unpack_CSC and GxB_Vector_pack_CSC as no duplicates should
be present. To set the values of the ur vector equal to the parents of these visited rows, ur is also used
as a structural mask to the GrB_Vector_assign operation in order to ensure that no extra entries will be

imported by the πr vector and that only the ones already present will be updated. As for the u
′
c vector, it is

set by utilizing the path vector as a structural mask along with the ’replace’ descriptor to delete any entries
present in the previous iteration that are not currently included in the mask. After updating the mates of the
columns, the two path vectors are swapped to prepare for the next iteration. The augment loop exits when all
paths have been examined and there are no entries left.

The program terminates when there are no augmented paths left, and the helper outputs used internally,
matec and mater, are finally assigned to the program’s outputs respectively.

3.3 Push-Pull optimization

Looking at the algorithm’s performance, the heaviest operation appears to be the semiring. It is helpful
to think of the semiring as a matrix multiplication and examine the different ways that this can be thought of
and, thus, executed.

GraphBLAS treats matrix multiplication as performed from the row perspective. As a result, for each
row, the dot product is performed with the vector. The sparsity of the vector does not matter in this case, as all
non-zero elements of A must be read. However, matrix multiplication can be executed column-wise, meaning
only the columns of A indicated by the vector’s non-zero values are touched, leading to less memory accesses
and better performance when the vector is sparse [2].

From linear algebra, we know that the following rule is valid:

C = A · v = (vT ·AT)T

Consequently, we can perform matrix-vector multiplication from the column perspective by transposing
the vector and the matrix. The output is a vector so we let GraphBLAS decide which is the most efficient
way to store it, as a row or as a column. The parents are then applied as a mask separately to ensure that the
previous output vector and the mask are aligned correctly.

The name of this optimization stems from this trick being used on the implementation of the PageRank
algorithm [7]. The pull direction corresponds to the row-based approach, where each vertex "pulls" the con-
tributions of its incoming neighbors to compute its score. On the opposite side, the push direction corresponds
to the column-based approach, where each vertex "pushes" its contribution to its outgoing neighbors.

The current criterion for deciding which method to follow at each iteration is the format of the vector. If
the vector is sparse or hypersparse, the push approach is preferred, while if the vector is bitmap or full, the
push approach is followed instead.

3.4 Vanilla version

The vanilla version of the algorithm excludes any extensions to the GraphBLAS API, which mainly refer
to creating operators, using pack/unpack methods and the FIRST operator.

GraphBLAS extension Replacement
GxB_*_new GrB_*_new

GxB_Vector_unpack_CSC GrB_Vector_extractTuples_UINT64
GxB_Vector_pack_CSC GrB_Vector_build_UINT64
GrB_FIRST_UINT64 GrB_MIN_UINT64

Table 3.2: Replacement of extensions for the vanilla version

The vanilla approach to creating the C frontier for the next iteration, by appropriately combining two
vectors, differs significantly from the SuiteSparse implementation.

In the SuiteSparse version, the values and indices of both vectors are extracted using the unpack method.
The second vector’s values are then used as indices for the output vector, while the values of the first vector
serve as the corresponding values. To construct the output vector, the pack method is used if there are no
duplicate entries in the second vector; otherwise, the build method is chosen.

In contrast, the vanilla version first checks whether the second vector contains duplicate entries. If dupli-
cates are found, the vector is inverted to eliminate them. The remaining indices of the second vector are then
used to extract the corresponding elements from the first vector. Finally, the GrB_Vector_build function
is used to construct the output vector as previously described.

References
[1] A. Azad and A. Buluç. "Distributed-Memory Algorithms for Maximum Cardinality Matching in Bipartite

Graphs". IEEE International Parallel & Distributed Processing Symposium (IPDPS), 2016.

[2] C. Yang, A. Buluç and J. D. Owens. "Implementing Push-Pull Efficiently in GraphBLAS". ICPP ’18:
Proceedings of the 47th International Conference on Parallel Processing, 2018.

[3] Timothy Davis. GraphBLAS. https://github.com/DrTimothyAldenDavis/GraphBLAS.

[4] Timothy Davis. GraphBLAS specification. https://github.com/DrTimothyAldenDavis/GraphBLAS/blob/
stable/Doc/GraphBLAS_UserGuide.pdf.

[5] Timothy Davis. LAGraph. https://github.com/GraphBLAS/LAGraph.

[6] Timothy Davis. SuiteSparse. https://github.com/DrTimothyAldenDavis/SuiteSparse.

[7] S. Beamer, K. Asanović and D. Patterson. "Reducing Pagerank Communication via Propagation Block-
ing". IEEE International Parallel & Distributed Processing Symposium (IPDPS), 2017.

8

https://github.com/DrTimothyAldenDavis/GraphBLAS
https://github.com/DrTimothyAldenDavis/GraphBLAS/blob/stable/Doc/GraphBLAS_UserGuide.pdf
https://github.com/DrTimothyAldenDavis/GraphBLAS/blob/stable/Doc/GraphBLAS_UserGuide.pdf
https://github.com/GraphBLAS/LAGraph
https://github.com/DrTimothyAldenDavis/SuiteSparse

	About
	High-level explanation of the algorithm
	Implementation
	Helper functions
	Algorithm walk-through
	Push-Pull optimization
	Vanilla version

	References

