
EDGE BETWEENNESS CENTRALITY IN GRAPHBLAS

An Undergraduate Research Scholars Thesis

by

CASEY PEI

Submitted to the Undergraduate Research office at
Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by
Faculty Research Advisor: Dr. Timothy Davis

May 2025

Major: Computer Science

Copyright © 2025. Casey Pei.

RESEARCH COMPLIANCE CERTIFICATION

Research activities involving the use of human subjects, vertebrate animals, and/or biohaz-

ards must be reviewed and approved by the appropriate Texas A&M University regulatory research

committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement applies

to activities conducted at Texas A&M and to activities conducted at non-Texas A&M facilities

or institutions. In both cases, students are responsible for working with the relevant Texas A&M

research compliance program to ensure and document that all Texas A&M compliance obligations

are met before the study begins.

I, Casey Pei, certify that all research compliance requirements related to this Undergraduate

Research Scholars thesis have been addressed with my Faculty Research Advisor prior to the

collection of any data used in this final thesis submission.

This project did not require approval from the Texas A&M University Research Compli-

ance & Biosafety office.

TABLE OF CONTENTS

Page

ABSTRACT . 1

DEDICATION . 2

ACKNOWLEDGMENTS . 3

NOMENCLATURE . 4

1. INTRODUCTION. 5

1.1 Brandes’ Traditional Algorithm . 6
1.2 The Exact Matrix EBC Algorithm . 8

2. METHODS . 11

2.1 SuiteSparse:GraphBLAS . 11
2.2 General Implementation Approach. 16
2.3 Brandes’ Traditional EBC Algorithm Implementation . 16
2.4 The Exact Matrix EBC Algorithm . 19

3. RESULTS. 25

3.1 Testing Methods . 25
3.2 Accuracy. 25
3.3 Benchmarking . 27

4. CONCLUSION. 31

4.1 Future Work . 31

APPENDIX: BRANDE’S TRADITIONAL ALGORITHM .. 33

APPENDIX: EXACT GRAPHBLAS ALGORITHM .. 48

ABSTRACT

Edge Betweenness Centrality in GraphBLAS

Casey Pei
Department of Computer Science and Engineering

Texas A&M University

Faculty Research Advisor: Dr. Timothy Davis
Department of Computer Science and Engineering

Texas A&M University

The Edge Betweenness Centrality (EBC) is a metric indicating that an edge can reach others

on relatively short paths based on its ratio of total paths and shortest paths, showing the importance

of the edge within a network. The EBC algorithm, proposed by Brandes in 2001, has wide-ranging

applications in network analysis, community detection, and identifying key infrastructure in trans-

portation and communication networks. While this method is widely used, it can be a bottleneck

when applied to large-scale networks due to its high computational complexity. A more recent

approach, developed by Robinson in 2011, adapts the EBC computation to leverage linear algebra

techniques for improved performance, reducing the time complexity in certain cases. This paper

presents an implementation of an exact matrix Edge Betweenness Centrality algorithm based on

Robinson’s approach using the SuiteSparse:GraphBLAS API in C, a powerful tool for perform-

ing matrix and vector operations on graphs. We demonstrate that while the linear algebra-based

GraphBLAS implementation does not yet outperform Brandes’ original algorithm for full EBC

computation, it does show the utility of a linear algebra-based approach and reveals areas where

the GraphBLAS kernels could be optimized.

1

DEDICATION

To my parents, Tiffany, and Ryan for supporting me.

2

ACKNOWLEDGMENTS

Contributors

I would like to thank my faculty advisor, Dr. Timothy Davis, for his invaluable guidance

and support throughout the course of this research. In addition, I would like to thank my fellow

undergraduate research cohort members Vidith Madhu, Daniel Pandyan, Darin Peries, Hemanth

Mukesh, Gabriel Gomez, and Julio Dondisch for their solidarity and advice.

Thanks also go to my friends, colleagues, and the department faculty and staff for making

my time at Texas A&M University a great experience.

The research papers and books used for Edge Betweenness Centrality in GraphBLAS were

provided by Dr. Tim Davis, and some myself.

All other work conducted for the thesis was completed by the student independently.

Funding Sources

Undergraduate research was supported by the Computer Science Department at Texas

A&M University.

3

NOMENCLATURE

G, (V,E) Graph

V , N Number of nodes/vertices

E, M Number of edges

ω Weight function on the edges

p(s, t) Path from s to t

d(s, t) Distance between vertices s and t – i.e., the minimum length of any path connecting
s and t in G

σst, σts Number of shortest paths from s ∈ V to t ∈ V

σst(v) Number of shortest paths from s to t that pass through some v ∈ V∑
s,t∈V

σ(s,t|e)
σ(s,t)

Betweenness centrality – a vertex can reach other vertices in relatively short paths,
or that a vertex lies on considerable fractions of shortest paths connecting others

δst(v) Pairwise dependency – σst(v)
σst

of a pair s, t ∈ V on an intermediary v ∈ V ; the ratio
of shortest paths between s and t that v lies on where:
If v is on the shortest path between s, t (if dG(s, t) < dG(s, v) + dG(v, t)):

σst(v) = 0
Else:

σst(v) = σsv ∗ σvt

4

1. INTRODUCTION

In graphs, it is often useful to measure the importance of a vertex or edge compared to

others for traversing the graph. This applies in social media, biology, material, scientific network

analysis, and more. Several metrics have been designed, but one main metric is betweenness

centrality, which was first proposed by Freeman in 1977 and Anthonisse in 1971 [1], [2]. In this

paper, we specifically explore the edge betweenness centrality metric (EBC) and the algorithms

used to achieve it.

EBC =
∑
s,t∈V

σ(s, t|e)
σ(s, t)

(1)

Betweenness centrality of an edge is the a ratio of all paths that pass through it to the

number of shortest paths that pass through it (see Equation 1). Therefore, an edge with a high

betweenness centrality likely acts as a critical connection between two sections of the network, and

removing it could disrupt communication between many pairs of nodes by severing their shortest

paths. Figure 1 provides an example with eight nodes in a network, in which a deeper red color

represents a higher edge betweenness, and the edge with the highest edge betweenness centrality

score is the connection between the connected subgraphs [3].

Figure 1: The edge betweenness centrality of an 8-node network

5

Figure 2: The edge betweenness centrality of the Karate graph

Figure 2 demonstrates the same edge betweenness centrality concept as Figure 1 on the

Karate Graph, again with the highest edge betweenness centrality score being the connection be-

tween the connected subgraphs. Here we see that the edge (0,31) has the highest edge betweenness

metric.

However, often due to the size of these network graphs, it becomes prohibitively costly to

use the EBC metric, as it grows more computationally expensive. Our goal is to implement an

exact matrix EBC algorithm using the GraphBLAS framework, leveraging it and a linear algebra

approach to improve computational cost. This implementation will be submitted into the LAGraph

repository and benchmarked against an implementation of Brandes’ algorithm in C as well as other

libraries such as NetworkX.

1.1 Brandes’ Traditional Algorithm

Brandes’ algorithm became one of the most notable for edge betweenness centrality, after

it was published in 2001. The algorithm can produce an exact result for the betweenness centrality

of each edge in O(NM) time complexity and in O(M) space complexity [4]. The pseudocode of

6

Brandes’ algorithm is shown in Algorithm 1.

Algorithm 1: Exact Traditional EBC in unweighted graphs
Result: Betweenness centrality CB[v] for each vertex v ∈ V

1 for each s ∈ V do
2 S ← empty stack;
3 P [w]← empty list, ∀w ∈ V ;
4 σ[t]← 0, ∀t ∈ V ;
5 σ[s]← 1;
6 d[t]← −1, ∀t ∈ V ;
7 d[s]← 0;
8 Q← empty queue;
9 enqueue s into Q;

10 while Q is not empty do
11 dequeue v from Q;
12 push v into S;
13 for each neighbor w of v do
14 if d[w] < 0 then
15 enqueue w into Q;
16 d[w]← d[v] + 1;

17 if d[w] = d[v] + 1 then
18 σ[w]← σ[w] + σ[v];
19 append v into P [w];

20 δ[v]← 0, ∀v ∈ V ;
21 while S is not empty do
22 pop w from S;
23 for each v ∈ P [w] do
24 δ[v]← δ[v] + σ[v]·(1+δ[w])

σ[w]
;

25 if w ̸= s then
26 CB[w]← CB[w] + δ[w];

The algorithm is split into two major steps:

1. The first loop traverses the graph using breadth-first search (BFS) to determine the total

number of shortest paths to each vertex.

7

2. The second loop backtracks in reverse depth order to perform centrality updates to each edge

given the shortest paths found in the first step.

1.2 The Exact Matrix EBC Algorithm

Using linear algebra, we can parallelize the operations done in Brandes’ algorithm, based

on the algorithm presented by Robinson in 2011 [5] with some alterations to the calculation phase.

This results in an exact matrix algorithm that has a time complexity of O(N2 +NM) and a space

complexity of only O(M). The pseudocode of this algorithm can be seen in Algorithm 2.

Algorithm 2: The Exact Matrix EBC Algorithm in unweighted graphs
Result: Resulting value for B

1 B ← 0;
2 for r = 1 to N do
3 d← 0;
4 S ← 0;
5 p← 0, p(r)← 1;
6 U ← 0;
7 v ← 0;
8 f ← A(r, :);
9 while f ̸= 0 do

10 d← d+ 1;
11 p← p+ f ;
12 S(d, :)← f ;
13 f ← fA× ¬p;

14 while d ≥ 1 do
15 fd← S(d, :);
16 fd1← S(d− 1, :);
17 J ← diag(fd, bc_update, paths);
18 I ← diag(fd1 ∗ p);
19 U ← I ∗ A ∗ J ;
20 B ← B + U ;
21 v ← U + .;
22 d← d− 1;

The linear algebra approach uses the same method of having a BFS phase and a backtrack-

8

ing calculation phase. The improvements lie in utilizing matrix operations to perform the same

operations in a more efficient manner.

1.2.1 The First Phase: BFS

To leverage breadth-first search through matrix-vector multiplication, it is essential to up-

date the parent and path information for the entire depth in one search. Furthermore, to maintain

the benefits of a linear algebra representation, the betweenness centrality updates should also be

performed for the entire depth at once.

Instead of tracking the parents for the shortest paths, it is sufficient to record the depth of

each vertex during the search. From this, the shortest path parents for a vertex v at breadth-first

search depth d can be easily determined as ∀u ∈ V : depth(u) = d− 1 and A(u, v) = 1.

Line 9 performs the breadth-first search. After updating the search based on the new fron-

tier obtained from the previous level, it selects the outgoing edges from that frontier, weights them

by the number of shortest paths leading to their parents, and sums the values. It then filters out

edges that lead to vertices already visited, resulting in the new frontier for the next depth level. The

loop continues until no new vertices appear on the frontier.

1.2.2 The Second Phase: Calculating EBC

This phase differs from Robinson’s approach because Robinson was using a different equa-

tion for EBC, whereas this has been edited to achieve the same result as Brandes’ original algorithm

[5].

In the second loop, the betweenness centrality updates involve dependencies only between

parents and children, so updating an entire depth at once does not cause conflicts. Updates are

carried out by selecting edges that come from vertices at the previous depth and point to vertices

at the current depth. These edges, representing the betweenness centrality updates for their source

vertices, are then weighted and summed accordingly.

Line 14 handles the betweenness centrality updates by processing the edges in reverse

depth order. Initially, it computes the weights associated with the child vertices, filtering out edges

9

that do not lead to vertices at the current depth. These weights are applied to the columns of the

adjacency matrix. Next, the algorithm computes the weights related to the parent vertices, filtering

out edges that do not originate from the previous depth, and applies these to the rows of the matrix.

The updates are then added to the betweenness centrality scores, and the vertex flow is calculated

by summing the rows of the current update.

10

2. METHODS

The traditional and GraphBLAS algorithms were entirely implemented in C, following the

format of the other algorithms developed within the LAGraph library using its and GraphBLAS’

methods. Preliminary comparisons of the algorithms to verify accuracy were made against Net-

workX results in Python. The algorithms were then benchmarked using the Texas A&M Computer

Science department’s BACKSLASH system – which has Intel Xeon E5-2695 v2, 2.40GHz, 12

cores, one socket, 24 threads and a memory of 768 GB.

2.1 SuiteSparse:GraphBLAS

The GraphBLAS standard represents graph operations as operations on often sparse ma-

trices and vectors based on semirings. This allows many graph algorithms to be completed in an

inherently parallel fashion, such as breadth-first search [6]. As one can see comparing (Algorithm

3) to (Algorithm 4), GraphBLAS also uses masked assignment, which avoids if-statements in the

innermost loops. This would otherwise require the algorithm to have access to the graph data

structure at all times. Additionally, it allows GraphBLAS to avoid deeply nested loops such as the

one in BFS in this case.

Algorithm 3: Traditional BFS
1 parent: vector of size n q: FIFO queue add s to q while q not empty do
2 for each i ∈ frontierq do
3 for each edge (i,j) do
4 if j not yet seen then
5 add j to next q parent(j) = i flag j as seen

Accordingly, if an algorithm relies on BFS in some manner, there is clearly some potential

speed-up that could be gained from using GraphBLAS. This is what originally higlighted EBC

11

Algorithm 4: GraphBLAS BFS
1 parent, q: vectors of size n
2 q(s) = 1
3 while q not empty do
4 q(parent) = A’ * q
5 parent(q) = q

algorithms for implementation in GraphBLAS, since the first phase of these algorithms utilize

BFS to get the shortest paths.

So by utilizing GraphBLAS, users can take advantage of parallel techniques common in

linear algebra to enhance performance while reducing development time. The standard also offers

other several benefits, including:

1. opaque data types; allowing users to focus on the algorithm rather than the implementation

details,

2. enabling bulk operations on graphs without needing to manage individual nodes and edges,

3. portability; ensuring that if a faster implementation of GraphBLAS is released, the existing

code will likely remain compatible without modification,

All this enables users to reduce development time while maintaining competitive perfor-

mance.

2.1.1 Matrices and Vectors

One of the key concepts in understanding how GraphBLAS handles sparse matrices and

vectors is its efficient storage and manipulation of data. Similar to the traditional representation

of graphs using adjacency matrices, where the presence of an edge between nodes is represented

by non-zero values, GraphBLAS leverages sparse matrices to store data in a way that avoids the

inefficiency of dense storage. In GraphBLAS, a matrix or vector does not explicitly store zero

values, which are often abundant in sparse data, such as graphs with many nodes but few edges.

12

In the case of sparse matrices, GraphBLAS uses opaque data structures to store only the

non-zero entries, significantly reducing memory usage. Just like an adjacency matrix in graph

theory, where a value at position A(i, j) represents an edge from node i to node j, GraphBLAS

stores values at positions that correspond to non-zero entries in the matrix. For example, in a

sparse matrix, the presence of an entry at A(i, j) indicates that some operation or relationship

exists between the i-th and j-th elements. If an entry is zero, it is not stored, thus reducing the

storage requirements and improving performance for large datasets.

When it comes to vectors, GraphBLAS follows a similar principle: only non-zero entries

are stored. This is particularly useful for graphs with large numbers of nodes and sparse connectiv-

ity, where many nodes do not have edges. In this context, a vector’s non-zero elements represent

important relationships or data points, while the zero elements are implicitly excluded from the

underlying data structure.

Furthermore, GraphBLAS does not require matrices or vectors to be square or full, as the

underlying data structures are flexible enough to represent rectangular or sparse forms efficiently.

For example, bipartite graphs, which involve two distinct sets of nodes, can be represented in

GraphBLAS with non-square matrices, where only the relevant non-zero elements are stored.

The power of GraphBLAS lies in its abstraction from the underlying data structure. The

user does not need to manage memory or storage concerns directly; instead, GraphBLAS handles

the complexity of efficiently encoding sparse matrices and vectors using the best data structures

for the task. This enables GraphBLAS to scale to large graphs and matrices, often with billions of

non-zero entries, without the need for excessive memory usage.

2.1.2 Masks and Descriptors

Masks are opaque objects that influence the output of many operations. Masks can either

be vectors or matrices, and they must match the dimensions of the output data structure of an

operation. The primary purpose of a mask is to hide certain elements from appearing in the result.

For instance, if a GraphBLAS operation attempts to assign a value to an index i, there must be a

corresponding value at i in the mask. Regular masks require the value to be specifically TRUE for

13

the mask to be applied correctly, whereas structural masks only need the presence of any value to

activate. Structural masks are particularly useful as they ignore the actual values within the vector

and only focus on the presence of values at specific locations. These masks are computationally

more efficient than regular masks.

In addition to masks, input/output vectors and matrices in an operation can be modified us-

ing descriptors. Descriptors are lightweight flags that adjust how the input parameters are treated

before the computation takes place. One of the most common descriptor operations is the com-

plement, which reverses the effect of the mask. Instead of applying the mask, it will place values

into the output array for any index not covered by the mask. Descriptors can also specify if a mask

should be treated as a structural mask, whether an input vector or matrix should be transposed, or

if the output should be entirely replaced by the result of the computation.

2.1.3 Semirings

A semiring consists of two main components: a monoid, which determines the operation

used in place of traditional addition, and a multiplicative operator, which replaces the usual matrix

multiplication.

In traditional matrix multiplication, the operation is based on the dot product of rows and

columns, where elements in the rows of the first matrix are multiplied by corresponding elements

in the columns of the second matrix and then summed. However, in GraphBLAS, the semiring

replaces traditional matrix multiplication by substituting a new multiplicative operator and an ad-

ditive monoid. For example, the plus-times semiring replaces traditional scalar multiplication with

a custom binary operator and addition with a monoid, allowing for highly flexible operations.

This allows operations such as subtraction, division, or user-defined operations instead of standard

multiplication.

The ability to customize both the additive and multiplicative operators provides a higher

level of abstraction, which is crucial for creating flexible and efficient graph algorithms. For ex-

ample, the min-plus semiring replaces traditional addition with the minimum operation and mul-

tiplication with the plus operation, which is particularly useful for algorithms like shortest path.

14

Another important application of semirings is in matrix-vector multiplication, which can be used

to find the neighbors of a node in a graph or to implement algorithms like BFS. These, and many

other graph algorithms, can be built using either user-defined or built-in semirings.

2.1.4 Methods Used

The matrix implementation of the algorithm was done using specific functions from the

GraphBLAS API specification. To give context for later explanations of this implementation, we

must go through the functions used.

These functions provide a powerful set of operations for matrix and vector manipulation,

specifically tailored for sparse graph algorithms. Each function is designed to perform operations

efficiently on sparse matrices and vectors, which is important for large-scale graph computations.

1. GrB_BinaryOp_new: Creates a new binary operator in the GraphBLAS library.

2. GrB_Matrix_nrows: Returns the number of rows in a matrix.

3. GrB_Vector_new: Creates a new sparse vector of a specified type and size.

4. GrB_Vector_nvals: This function returns the number of non-zero values in a vector. It is

used to check the size of the frontier during the BFS traversal in your code.

5. GrB_Vector_clear: Clears all entries in a vector. It is used to reset vectors during the BFS

process.

6. GrB_Col_extract: Extracts a column from a matrix and stores it into a vector.

7. GrB_vxm (Matrix-Vector Multiply with Masking): Multiplies a vector with a matrix on a

semiring and applies a optional mask.

8. GrB_mxm (Matrix-Matrix Multiply with Masking): Multiplies a matrix with a matrix on a

semiring and applies an optional mask.

9. GrB_eWiseMult (Element-wise Multiply): Performs an element-wise multiplication be-

tween two matrices or vectors, applying a specified binary operator.

15

10. GrB_Matrix_diag: This function creates a diagonal matrix using the values from a vector.

11. GrB_assign: This function assigns values to elements of a matrix or vector based on a mask

or indices.

12. GrB_reduce: This function reduces a matrix to a single vector by applying a monoid oper-

ation (like summing the values).

13. GrB_eWiseAdd (Element-wise Addition): Performs an element-wise addition between two

matrices or vectors, applying a specified binary operator.

GrB_Matrix_clear: Clears all values from a matrix, effectively setting it to zero.

2.2 General Implementation Approach

The general approach for all implementations is the same as the one demonstrated in the

Introduction for Algorithm 1. That is the two main phases:

1. Phase 1: BFS to obtain shortest path counts

2. Phase 2: Back-tracking to calculate EBC for each edge

2.3 Brandes’ Traditional EBC Algorithm Implementation

We implemented Brandes’ traditional EBC algorithm in GraphBLAS as a way to verify

accuracy of the matrix implementation. The implementation was relatively straightforward and

similar to the pseudocode version presented in (Algorithm 1). To better describe the implementa-

tion details, we will only discuss what diverged compared to the pseudocode.

2.3.1 Data Structures

The algorithm utilizes the following data structures (given by the variable name used in the

pseudocode and equations, and then by the name used in the code):

• d[i] (called depth[i]): Distance array storing the shortest path depth from the source.

16

• σ[i] (called paths[i]): Stores the count of shortest paths from the source to vertex i.

• S (called S): A stack used to facilitate dependency accumulation.

• δ[i] (called bc_vertex_flow): An array that accumulates the dependency scores.

• P (called P): A predecessor list tracking the shortest path tree.

• Q (called queue): A queue used for BFS traversal.

2.3.2 Phase 1: BFS to get shortest paths

When implementing this algorithm efficiently in GraphBLAS, space optimization is crucial,

especially for large sparse graphs. One effective space-saving measure we used was leveraging

the Compressed Sparse Row (CSR) format to store the transposed adjacency matrix instead of

allocating additional memory for tracking inbound edges separately.

2.3.2.1 Using CSR for the Transposed Adjacency Matrix

First, we needed to get the nodes of the predecessors’ incoming edges rather than their

outgoing edges for the backtracking phase to work. This is easily achieved by taking the transpose

of the original adjacency matrix if the graph is directed (otherwise it is symmetric and there is no

need).

CSR is a common storage format for sparse matrices, as it efficiently represents nonzero el-

ements while reducing memory overhead. An adjacency matrix A (see 2.1) in CSR format encodes

outbound edges, where each row corresponds to a node, and its nonzero entries indicate outgoing

edges to other nodes. An example of a matrix in CSR format can be found in Figure 3. The Ap

array has size nrows+1, and determines the start and end of each row of the matrix. The ith row has

entries in the columns given by the list Aj [Ap [i] ... Ap[i+1]-1], and the corresponding nonzero

values are given by Ax [Ap [i] ... Ap[i+1]-1].

However, for certain graph algorithms such as BFS that require processing inbound edges,

we need to work with the transpose AT , where each row now represents incoming edges instead of

outgoing ones.

17

Figure 3: Diagram demonstrating CSR storage format of a matrix. Used with permission of Dr. Timothy
Davis [7]

2.3.2.2 Reusing the Pointer to the p Array

By unpacking the A matrix in CSR format, it is easy to traverse the entries. For instance,

it’s able to travel through all the inbound edges of a node or all nodes of the AT matrix via the Ap

and Aj arrays respectively, since then the inbound edges are in Ap[v]. A significant benefit of this

optimization was then avoiding the need for an additional data structure to store inbound edges,

since we just pointed to the original entries of A.

Instead of creating a separate p array for AT , the implementation simply reuses the p array

of the original adjacency matrix A. Since transposing a sparse matrix only affects how edges are

accessed but not their positions in memory, the original p array can still provide correct segmenta-

tions for traversing inbound edges efficiently.

2.3.3 Phase 2: Edge Betweenness Computation

The dependency score δ[v] is computed as follows:

δ[v] =
∑

w∈succ(v)

(
p[v]

p[w]
(1 + δ[w])

)
(2)

where succ(v) is the set of successor nodes of v.

Finally, the betweenness centrality score of an edge (Update, v) is given by:

18

B[Update, v] =
∑
r∈V

δ[v] (3)

2.4 The Exact Matrix EBC Algorithm

As stated previous this algorithm required more effort as the EBC calculation phase was

novel to match the formula for EBC from Brandes. Therefore the calculation phase is also the most

involved as BFS is straightforward in GraphBLAS.

2.4.1 Data Structures

The algorithm utilizes the following data structures (given by the variable name used in the

pseudocode and equations, and then by the name used in the code):

• B (called centrality): The final matrix with the EBC value for each edge.

• S (called Search): Array of BFS search matrices. Search[i] is a sparse matrix that stores

the depth at which each vertex is first seen thus far in each BFS at the current depth i. Each

column corresponds to a BFS traversal starting from a source node.

• f (called frontier): Frontier vector, a sparse matrix. Stores the number of shortest paths

to vertices at the current BFS depth.

• p (called paths): Paths matrix holds the number of shortest paths for each node and starting

node discovered so far. A dense vector that is updated with sparse updates, and also used

as a mask. Please note that p represents the same thing as σ as in the traditional algorithm

pseudocode.

• v (called bc_vertex_flow): The betweenness centrality for each vertex. A dense vector

that accumulates flow values during backtracking. Please note that v represents the same

thing as δ as in the traditional algorithm pseudocode.

• U (called Update): Update matrix for betweenness centrality for each edge. A sparse

matrix that holds intermediate centrality updates.

19

• n/a (called Add_One_Divide): Binary operator for computing (1 + x)/y in centrality

calculations.

• J (called J_matrix): Matrix for current level contributions.

• I (called I_matrix): Matrix for previous level contributions.

There are also some temporary variables that are only used in the code implementation and

not the pseudocode:

• Fd1A: Intermediate product matrix.

• temp_update: Temporary vector for centrality updates.

• J_vec: Diagonal values for J_matrix.

• I_vec: Diagonal values for I_matrix.

2.4.2 Phase 1: BFS to get shortest path

Rather than having to unpack the AT matrix into CSR format, we can use matrix operations

to traverse each column and obtain the paths and the frontier. This allows us to get each frontier as

a group rather than iterate each node in the frontier sequentially, as well as accumulate the shortest

path counts using a masked assignment with an addition semiring:

σ += frontier (4)

GRB_TRY (GrB_assign (paths, NULL, GrB_PLUS_FP64, frontier,

GrB_ALL, n, NULL)) ;

2.4.3 Phase 2: Edge Betweenness Computation

In the creation of this algorithm, we found that the EBC calculation presented by Robinson

[5] used a different equation for the EBC metric. In order to match NetworkX and Brandes’

conception of EBC [8], our implementation required a different calculation approach.

20

For the matrix implementation, we used matrix operations to achieve the same fundamental

equation guiding this process:

δ[v] +=
∑

w∈P [v]

σ[v]

σ[w]
(1 + δ[w]) (5)

where:

• δ represents the betweenness centrality update (bc_vertex_flow).

• w = J corresponds to nodes in the current level.

• v = I corresponds to the nodes at the previous level.

• σ represents the number of shortest paths (paths).

Each GraphBLAS operation in Appendix: Exact Matrix Algorithm helps construct the

necessary matrices to efficiently implement the edge betweenness centrality update computation,

Equation 5, using sparse matrix operations. The purpose and specific effect of each operation is

summarized in Table 1.

This structured approach ensures efficient computation using sparse matrices while avoid-

ing explicit loops, leveraging GraphBLAS’ parallelized operations.

21

Table 1: GraphBLAS Operations and Their Mathematical Effects

Step GraphBLAS Operation Mathematical
Effect

Compute J GrB_eWiseMult + GrB_Matrix_diag J [w] = 1+δ[w]
σ[w]

Compute I GrB_Vector_extract + GrB_Matrix_diag Isolates nodes at
depth d− 1

Compute Fd1A GrB_mxm(Fd1A, I, A) Temporary result of
I ∗ A

Compute U GrB_mxm(Update, Fd1A, J) Computes
dependencies

Accumulate into B GrB_eWiseAdd(B, U) Updates BC scores
Sum U into Vector
v

GrB_reduce(U), GrB_eWiseAdd(bc_vertex_flow) Updates node BC
flow

2.4.3.1 Constructing the J Matrix

The J matrix represents a diagonal matrix capturing the term:

J [w] =
1 + δ[w]

σ[w]
(6)

The first operation computes element-wise division of bc_vertex_flow and paths, adding

1 to bc_vertex_flow. The result is then converted into a diagonal matrix to ensure correct appli-

cation in the next step.

GRB_TRY (GrB_eWiseMult(J_vec, f_d, NULL, Add_One_Divide,

bc_vertex_flow, paths, GrB_DESC_RS)) ;

GRB_TRY (GrB_Matrix_diag(&J_matrix, J_vec, 0)) ;

2.4.3.2 Constructing the I Matrix

The I matrix isolates nodes at the next depth level d−1, which ensures that the dependency

values are correctly accumulated.

GRB_TRY (GrB_Vector_extract (I_vec, f_d1, NULL, paths,

GrB_ALL, n, GrB_DESC_RS)) ;

22

GRB_TRY (GrB_Matrix_diag(&I_matrix, I_vec, 0)) ;

2.4.3.3 Computing Fd1A = I · A

This operation computes inbound edges to nodes at depth d− 1. It approximately serves as

of a temporary matrix to obtain the left-hand side of the operation for calculating U .

GRB_TRY(GrB_mxm(Fd1A, NULL, NULL, LAGraph_plus_first_fp64,

I_matrix, A, NULL)) ;

2.4.3.4 Computing U = Fd1A · J

Compute the dependency accumulation step:

U [v] =
∑

w∈P [v]

σ[v](
1 + δ[w]

σ[w]
) (7)

GRB_TRY(GrB_mxm(Update, NULL, NULL,

GrB_PLUS_TIMES_SEMIRING_FP64, Fd1A, J_matrix, NULL)) ;

2.4.3.5 Accumulating U into Betweenness Centrality

Update the betweenness centrality matrix:

B = B + U (8)

GRB_TRY (GrB_assign(*centrality, A, GrB_PLUS_FP64, Update,

GrB_ALL, n, GrB_ALL, n,

GrB_DESC_S)) ;

2.4.3.6 Summing U Into a Vector

Then we reduce U along columns to accumulate updates to v.

GRB_TRY (GrB_reduce(temp_update, NULL, NULL,

GrB_PLUS_MONOID_FP64, Update, NULL)) ;

23

GRB_TRY (GrB_eWiseAdd(bc_vertex_flow, NULL, NULL,

GrB_PLUS_FP64, bc_vertex_flow, temp_update, NULL)) ;

24

3. RESULTS

3.1 Testing Methods

As mentioned previously in the Methods section, the results were benchmarked on Texas

A&M’s BACKSLASH system, which has 12 cores, a 24 thread Intel(R) Xeon(R) CPU E5-2695

v2 @ 2.40GHz, and 768GB of RAM. A typical maximum speedup on this platform is around the

factor of 12, though our testing in this case did not use multiple threads so speedup was likely

limited. The test suite consisted of 11 sparse graphs chosen from LAGraph/data:

1. diamonds.mtx,

2. karate.mtx,

3. random_unweighted_general1.mtx,

4. random_unweighted_general2.mtx,

5. random_unweighted_bipartite1.mtx,

6. random_unweighted_bipartite2.mtx,

7. jagmesh7.mtx,

8. dnn_data/n1024-l1.mtx,

9. bcsstk13.mtx,

10. cryg2500.mtx,

11. pushpull.mtx

All graphs were symmetric, had self-edges removed, were treated as unweighted even if

they had weights.

3.2 Accuracy

The accuracy of the GraphBLAS exact matrix algorithm implementation was analyzed in

two different methods. First, we verified using small graphs by comparing against the Python

graph library, NetworkX (Table 2). This method of verification is limited, as NetworkX uses a

25

traditional sequential algorithm implementation, which slows significantly on larger graphs and

becomes impractical.

Table 2: Error on Brandes’ Traditional EBC Algorithm in GraphBLAS vs NetworkX

Graph Error
diamonds 0.0000E+00
karate 2.1312E-14

Secondarily, we also verified accuracy by comparing the results of the traditional algorithm

to the exact matrix algorithm.

Table 3: Difference between Traditional and GraphBLAS algorithm

Graph Nodes Edges Difference
diamonds 8 12 0.00E+00
karate 34 156 0.00E+00
random_unweighted_general1 50 208 1.42E-14
random_unweighted_general2 200 1912 2.84E-14
random_unweighted_bipartite1 300 2064 5.68E-14
random_unweighted_bipartite2 300 2056 5.68E-14
jagmesh7 1138 6312 2.91E-11
dnn_data/n1024-l1 1024 31744 0.00E+00
bcsstk13 2003 81880 7.28E-12
cryg2500 2500 9849 0.00E+00
pushpull 4000 194194 4.73E-10

If the total difference between all the EBC values of each edge between the two results was

less than 1e-4, we found that the GraphBLAS algorithm was accurate. Observing Table 3, we

see that for all the graphs tested, the algorithm was accurate. The differences in the results of the

algorithms are merely due to differences in floating-point roundoff; all of these algorithms thus

compute the same result.

26

3.3 Benchmarking

Before going into the benchmarks, we first compare the time and space complexity of

the traditional and matrix implementation EBC algorithms to understand the general theoretical

efficiency of these algorithms.

Table 4: Time and Space Complexity of Algorithms

Algorithm Time Complexity Space Complexity
Traditional (Brandes’) O(NM) O(M)

Exact Matrix O(N2 +NM) O(M)

Based on the general time complexities described in (Table 4), it appears that the matrix

implementations of the EBC algorithm are less efficient. However, this is while not taking into

account the efficiency added by the implementation details of SuiteSparse:GraphBLAS.

To measure efficiency changes resulting from GraphBLAS implementation, benchmark

comparisons between Brandes’ traditional algorithm and the exact matrix algorithm were run on

Texas A&M University’s BACKSLASH system (see Table 5).

Table 5: Performance of Traditional Brandes vs GraphBLAS Algorithm

Time (s)
Graph Nodes Edges Traditional Exact GraphBLAS
diamonds 8 12 1.8752E-03 7.6016E-03
karate 34 156 1.9718E-03 2.6832E-02
random_unweighted_general1 50 208 2.3977E-04 4.3072E-02
random_unweighted_general2 200 1912 4.6354E-03 1.7944E-01
random_unweighted_bipartite1 300 2064 1.0263E-02 3.8023E-01
random_unweighted_bipartite2 300 2056 1.0605E-02 3.5961E-01
jagmesh7 1138 6312 7.6609E-02 8.6047E+00
dnn_data/n1024-l1 1024 31744 2.7643E-01 1.0668E+01
bcsstk13 2003 81880 8.6999E-01 1.0994E+01
cryg2500 2500 9849 3.5900E-01 2.1005E+02
pushpull 4000 194194 5.9152E+00 7.0959E+02

27

Figure 4: Performance of Traditional Brandes vs GraphBLAS Algorithm

As graph size expanded, we noted an unexpected increase in computation time (see Figure

4), which was significantly longer than initially anticipated. To identify the source of this issue, we

utilized Burble, a profiling and performance analysis tool that will output a single line of output

from each (significant) call to GraphBLAS. The Burble output is used to help detect when we are

using sub-optimal methods.

Burble provided a detailed view of the computational performance and allowed us to iden-

tify that the problem seemed to arise mainly from the three following operations:

1. Matrix multiply (GrB_mxm) for the I_matrix.

GRB_TRY(GrB_mxm(Fd1A, NULL, NULL,

LAGraph_plus_first_fp64, I_matrix, A,

NULL)) ;

28

2. Matrix multiply (GrB_mxm) for the J_matrix.

GRB_TRY(GrB_mxm(Update, NULL, NULL,

GrB_PLUS_TIMES_SEMIRING_FP64, Fd1A, J_matrix,

NULL)) ;

3. Matrix Assignment (GrB_assign) when adding the Update matrix to the centrality

matrix.

GRB_TRY (GrB_assign(*centrality, A, GrB_PLUS_FP64,

Update, GrB_ALL, n, GrB_ALL, n,

GrB_DESC_S)) ;

All of these operations were running slower than they should be expected to given how

many elements they would actually have to work with due to their sparsity. For instance, we can

look at the second operation with matrix multiplication involving the J_matrix.

Matrix multiplication involving a hypersparse matrix like J_matrix can be much faster,

as the sparsity allows for skipping over zero elements, thus reducing unnecessary computations.

Ideally, it would be. However, instead the kernel used for matrix multiplication in GraphBLAS

was a general-purpose implementation.

This kernel processes every element of Fd1A, checking if each one would be multiplied

with any non-zero element in J_matrix. Since Fd1A is not hypersparse, this results in per-

forming redundant checks for many elements that do not interact with the hypersparsely populated

J_matrix.

Burble’s analysis revealed that the general-purpose kernel was inefficient when dealing with

the sparsity of J_matrix. Instead of leveraging the sparsity of J_matrix to reduce the number

of operations, the kernel was iterating over all the elements of the denser Fd1A matrix, leading to

unnecessary calculations.

These inefficiencies became particularly evident even in smaller graphs. As the size of

the graph increased, the computation time grew substantially, which significantly hindered perfor-

29

mance. This can be seen in Table 6 where as the graph size grows, the relative time these three

operations take also grows, indicating that they are increasing asymptotically fast compared to the

other operations used in the algorithm.

Table 6: Performance of GraphBLAS Operations in the Exact GraphBLAS algorithm

% of total time taken
Graph mxm with I mxm with J assign total time (s)
diamonds 4.39% 3.68% 7.70% 7.21E-03
karate 9.43% 8.77% 12.32% 2.24E-02
random_unweighted_general1 9.77% 8.91% 12.20% 3.74E-02
random_unweighted_general2 10.42% 15.46% 14.13% 1.50E-01
random_unweighted_bipartite1 10.10% 15.62% 15.35% 3.14E-01
random_unweighted_bipartite2 9.96% 15.53% 15.44% 3.02E-01
jagmesh7 10.54% 16.60% 12.01% 8.21E+00
dnn_data/n1024-l1 10.49% 20.45% 14.64% 1.05E+01
bcsstk13 10.22% 40.69% 17.24% 1.08E+01
cryg2500 10.56% 17.12% 11.51% 2.91E+01
pushpull 12.70% 10.93% 13.42% 7.06E+02

The performance issue observed in these operations is a key observation for future opti-

mizations in GraphBLAS. Once optimized kernels for these special cases (such as in the case of

hypersparse diagonal matrices when it comes to matrix multiplication, or assignment in place of a

sparse matrix) are implemented, we expect significant improvements in computation time. These

optimizations will make matrix-matrix multiplication and assignment much faster, especially for

larger and sparser graphs.

30

4. CONCLUSION

This thesis overall demonstrates the utility of GraphBLAS in implementing a matrix ver-

sion of a traditional algorithm, achieving results with less than 1E-10 difference compared to a

traditional algorithm, which can be explained by rounding issues. We also found multiple per-

formance bottlenecks in GraphBLAS when implementing the Exact EBC algorithm. They point

to the need for at least three new specialized internal kernels in GraphBLAS, not a revision of

the EBC algorithm or the GraphBLAS API. Once these new kernels are written, the performance

of the EBC algorithm should be dramatically improved, as well as be able to be used by future

algorithms implemented in GraphBLAS.

4.1 Future Work

As stated above, the performance bottlenecks identified in the matrix multiplication and

assign operations provide valuable insights for future optimizations in the GraphBLAS library.

By developing specialized kernels that take advantage of the sparsity inherent in matrices like

J_matrix, we anticipate significant reductions in computation time. This optimization offers

substantial performance gains, particularly as the size and sparsity of the graphs increase.

Additionally, there are more parameters that could be added to the EBC algorithms to in-

crease functionality. Specifically, the ability to normalize the EBC values and work with weighted

graphs, both of which are available in NetworkX. Adding normalization of the EBC values would

be relatively simple, as it’s just applying a scale to the EBC values after calculation, while in-

creasing utility by having the values be from a 0 to 1 scale. As for running the EBC algo-

rithm on weighted graphs, Robinson [5] notes that the traditional algorithm approach would use

O(N2log(N)) time, with the matrix version having to take O(N3) time since the rows of the ma-

trix cannot be stored and operated on as a priority queue. However, NetworkX implements phase

1 (BFS phase for unweighted graphs) using Dijkstra’s algorithm, which uses a priority queue.

Therefore, it may actually be possible to add this functionality with similar time complexity.

31

REFERENCES

[1] L. C. Freeman, “A set of measures of centrality based on betweenness,” Sociometry, vol. 40,
p. 35, 1971.

[2] J. M. Anthonisse, “The rush in a directed graph. technical report,” Stichting Mathematisch
Centrum, Amsterdam, 1971.

[3] L. Lu and M. Zhang, “Encyclopedia of systems biology,” in Springer, 2013, pp. 647–648.
DOI: https://doi.org/10.1007/978-1-4419-9863-7_874.

[4] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of Mathematical
Sociology, vol. 25, pp. 163–177, 2001.

[5] E. Robinson, “Graph algorithms in the language of linear algebra,” in J. Kepner and
J. Gilbert, Eds. Society for Industrial and Applied Mathematics, 2011, ch. Chapter 6:
Complex Graph Algorithms, pp. 68–84.

[6] T. Davis, Juliacon 2023 keynote: Prof. tim davis, [Online Video]. Available:
https://youtu.be/0XZILz4hIkY?si=MJFxqWKdyiFr99H9, Cambridge, USA, Aug. 2023.

[7] T. Davis, User guide for suitesparse:graphblas, SuiteSparse:GraphBLAS, 2024, pp. 68–84.

[8] U. Brandes, “On variants of shortest-path betweenness centrality and their generic
computation,” Social Networks, vol. 30, no. 2, pp. 136–145, 2008, ISSN: 0378-8733. DOI:
https://doi.org/10.1016/j.socnet.2007.11.001. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0378873307000731.

32

https://doi.org/https://doi.org/10.1007/978-1-4419-9863-7_874
https://youtu.be/0XZILz4hIkY?si=MJFxqWKdyiFr99H9
https://doi.org/https://doi.org/10.1016/j.socnet.2007.11.001
https://www.sciencedirect.com/science/article/pii/S0378873307000731

APPENDIX: BRANDE’S TRADITIONAL ALGORITHM

Listing A.1: LAGr_EdgeBetweennessCentrality: edge betweenness-centrality

1 //

--

2 // LG_check_edgeBetweennessCentrality: reference implementation for

edge

3 // betweenness centrality

4 //

--

5

6 // LAGraph, (c) 2019-2022 by The LAGraph Contributors, All Rights

Reserved.

7 // SPDX-License-Identifier: BSD-2-Clause

8 //

9 // For additional details (including references to third party source

code and

10 // other files) see the LICENSE file or contact permission@sei.cmu.edu.

See

11 // Contributors.txt for a full list of contributors. Created, in part,

with

12 // funding and support from the U.S. Government (see Acknowledgments.

txt file).

13 // DM22-0790

14

33

15 // Contributed by Casey Pei, Texas A&M University

16

17 //

--

18

19 #define LG_FREE_WORK \

20 { \

21 LAGraph_Free ((void **) &queue, NULL) ; \

22 LAGraph_Free ((void **) &depth, NULL) ; \

23 LAGraph_Free ((void **) &bc_vertex_flow, NULL) ; \

24 LAGraph_Free ((void **) &S, NULL) ; \

25 LAGraph_Free ((void **) &paths, NULL) ; \

26 LAGraph_Free ((void **) &Pj, NULL) ; \

27 LAGraph_Free ((void **) &Ptail, NULL) ; \

28 }

29

30 #define LG_FREE_ALL \

31 { \

32 LG_FREE_WORK ; \

33 LAGraph_Free ((void **) &Ap, NULL) ; \

34 LAGraph_Free ((void **) &Aj, NULL) ; \

35 LAGraph_Free ((void **) &Ax, NULL) ; \

36 }

37

38 #include "LG_internal.h"

39 #include <LAGraphX.h>

40

41 //

34

--

42 // test the results from a Edge Betweenness Centrality

43 //

--

44

45 int LG_check_edgeBetweennessCentrality

46 (

47 // output

48 GrB_Matrix *C, // centrality matrix

49 // input

50 LAGraph_Graph G,

51 char *msg

52)

53 {

54 //

--

55 // initialize workspace variables

56 //

--

57

58 double tt = LAGraph_WallClockTime () ;

59 GrB_Info info ;

60

61 // Array storing shortest path distances from source to each vertex

62 int64_t *depth = NULL ;

35

63

64 // Array storing dependency scores during accumulation phase

65 double *bc_vertex_flow = NULL ;

66

67 // Stack used for backtracking phase in dependency accumulation

68 int64_t *S = NULL ;

69

70 // Queue used for BFS traversal

71 int64_t *queue = NULL ;

72

73 // Predecessor list components:

74 // Pj: array of predecessor vertices

75 // Ptail: end indices for each vertex’s predecessor list

76 // Phead: start indices for each vertex’s predecessor list

77 GrB_Index *Pj = NULL ;

78 GrB_Index *Ptail = NULL ;

79 GrB_Index *Phead = NULL ;

80

81 // Array storing number of shortest paths to each vertex

82 double *paths = NULL ;

83

84 // Temporary array for centrality results

85 double *result = NULL;

86

87 //

--

88 // check inputs

89 //

36

--

90

91 GrB_Index *Ap = NULL, *Aj = NULL, *neighbors = NULL, *ATp = NULL, *

ATj = NULL ;

92 void *Ax = NULL, *ATx = NULL ;

93 GrB_Index Ap_size, Aj_size, Ax_size, n, nvals, ATp_size, ATj_size,

ATx_size ;

94 LG_TRY (LAGraph_CheckGraph (G, msg)) ;

95 GRB_TRY (GrB_Matrix_nrows (&n, G->A)) ;

96 GRB_TRY (GrB_Matrix_nvals (&nvals, G->A)) ;

97 bool print_timings = (n >= 2000) ;

98

99 LG_TRY (LAGraph_DeleteSelfEdges (G, msg)) ;

100

101 GrB_Matrix A = G->A ;

102

103 LG_TRY (LAGraph_Cached_AT (G, msg)) ;

104

105 GrB_Matrix AT ;

106 if (G->kind == LAGraph_ADJACENCY_UNDIRECTED ||

107 G->is_symmetric_structure == LAGraph_TRUE)

108 {

109 // A and A’ have the same structure

110 // AT = A;

111 GrB_Matrix_new (&AT, GrB_FP64, n, n) ;

112 GrB_Matrix_dup (&AT, A) ;

113 }

114 else

37

115 {

116 // A and A’ differ

117 AT = G->AT ;

118 LG_ASSERT_MSG (AT != NULL, LAGRAPH_NOT_CACHED, "G->AT is

required") ;

119 }

120

121

122 //

--

123

124 LG_CLEAR_MSG ;

125

126 //

--

127 // allocate workspace

128 //

--

129

130 LG_TRY(LAGraph_Malloc((void **)&depth, n, sizeof(int64_t), msg));

131

132 LG_TRY(LAGraph_Calloc((void **)&bc_vertex_flow, n, sizeof(double),

msg));

133

134 LG_TRY(LAGraph_Malloc((void **)&S, n, sizeof(int64_t), msg));

135

38

136 LG_TRY(LAGraph_Malloc((void **)&queue, n, sizeof(int64_t), msg));

137

138 //

--

139 // bfs on the A

140 //

--

141

142 if (print_timings)

143 {

144 tt = LAGraph_WallClockTime () - tt ;

145 printf ("LG_check_bfs init time: %g sec\n", tt) ;

146 tt = LAGraph_WallClockTime () ;

147 }

148

149 // Initialize centrality matrix result to 0

150 // 1. result [(v, w)] <-- 0, for all (v, w) in E

151 // A temporary result centrality matrix initialized to 0 for all

vertice,

152 // -- further changes would need to be made to make it a dictionary

of edges.

153 GrB_Index result_size = n * n ;

154 LG_TRY(LAGraph_Calloc((void **)&result, result_size, sizeof(double)

, msg));

155

156 // result (v,w) is held in result (INDEX(v,w)):

157 #define INDEX(i,j) ((i)*n+(j))

39

158

159 //

--

160 // unpack the A matrix in CSR form for SuiteSparse:GraphBLAS

161 //

--

162

163 #if LAGRAPH_SUITESPARSE

164 bool iso, AT_iso ;

165 GRB_TRY (GxB_Matrix_unpack_CSR (A,

166 &Ap, &Aj, &Ax, &Ap_size, &Aj_size, &Ax_size, &iso, NULL, NULL))

;

167

168 GRB_TRY (GxB_Matrix_unpack_CSR (AT,

169 &ATp, &ATj, &ATx, &ATp_size, &ATj_size, &ATx_size, &AT_iso,

NULL, NULL)) ;

170 #endif

171

172 Phead = ATp ;

173

174 //

--

175

176 LG_TRY(LAGraph_Malloc((void **)&Pj, nvals, sizeof(GrB_Index), msg))

;

177 LG_TRY(LAGraph_Malloc((void **)&Ptail, n, sizeof(GrB_Index), msg));

40

// might need to be + 1

178

179 LAGraph_Calloc ((void **) &paths, n, sizeof (double), msg) ;

180

181 //

===

182 // === Main computation loop

==

183 //

===

184

185 // Process each vertex as a source

186 for (int64_t s = 0; s < n; s++) {

187

188 //

--

189 // Initialize data structures for current source

190 //

--

191

192 size_t sp = 0; // stack pointer

193 memcpy(Ptail, ATp, n * sizeof(GrB_Index));

194

195 // Initialize path counts

196 for (int64_t i = 0; i < n; i++) {

41

197 paths[i] = 0;

198 }

199 paths[s] = 1;

200

201 // Initialize distances

202 for (size_t t = 0; t < n; t++) {

203 depth[t] = -1;

204 }

205 depth[s] = 0;

206

207 //

--

208 // BFS phase to compute shortest paths

209 //

--

210

211 int64_t qh = 0, qt = 0; // queue head and tail

212 queue[qt++] = s; // enqueue source

213

214 while (qh < qt) {

215 int64_t v = queue[qh++];

216 S[sp++] = v;

217

218 // Process neighbors of current vertex

219 for (int64_t p = Ap[v]; p < Ap[v+1]; p++) {

220 int64_t w = Aj[p];

221

42

222 // Handle unvisited vertices

223 if (depth[w] < 0) {

224 queue[qt++] = w;

225 depth[w] = depth[v] + 1;

226 }

227

228 // Update path counts for vertices at next level

229 if (depth[w] == depth[v] + 1) {

230 paths[w] += paths[v];

231

232 if (Ptail [w] >= Phead [w+1] || Ptail [w] < Phead [

w])

233 {

234 printf ("Ack! w=%ld Ptail [w]=%ld, Phead [w]=%

ld Phead[w+1]=%ld\n",

235 w, Ptail [w], Phead [w], Phead [w+1]) ;

236 fflush (stdout) ; abort () ;

237 }

238

239 Pj[Ptail[w]++] = v;

240 }

241 }

242 }

243

244 //

--

245 // Dependency accumulation phase

246 //

43

--

247

248 // Initialize dependency scores

249 for (size_t v = 0; v < n; v++) {

250 bc_vertex_flow[v] = 0;

251 }

252

253 // Process vertices in reverse order of discovery

254 while (sp > 0) {

255 int64_t w = S[--sp];

256

257 // Update dependencies through predecessors

258 for (int64_t p = Phead[w]; p < Ptail[w]; p++) {

259 int64_t v = Pj[p];

260

261 // Compute and accumulate dependency

262 double centrality = paths[v] * ((bc_vertex_flow[w] + 1)

/ paths[w]);

263 bc_vertex_flow[v] += centrality;

264 result[INDEX(v,w)] += centrality;

265 }

266 }

267 }

268

269 if (print_timings)

270 {

271 tt = LAGraph_WallClockTime () - tt ;

272 printf ("LG_check_edgeBetweenessCentrality time: %g sec\n", tt)

44

;

273 tt = LAGraph_WallClockTime () ;

274 }

275

276 //

--

277 // repack the A matrix in CSR form for SuiteSparse:GraphBLAS

278 //

--

279

280 #if LAGRAPH_SUITESPARSE

281 GRB_TRY (GxB_Matrix_pack_CSR (A,

282 &Ap, &Aj, &Ax, Ap_size, Aj_size, Ax_size, iso, false, NULL)) ;

283 GRB_TRY (GxB_Matrix_pack_CSR (AT,

284 &ATp, &ATj, &ATx, ATp_size, ATj_size, ATx_size, AT_iso, false,

NULL)) ;

285 #endif

286

287 #if 0

288 GrB_Info GxB_Matrix_pack_FullR // pack a full matrix, held by row

289 (

290 GrB_Matrix A, // matrix to create (type, nrows, ncols

unchanged)

291 void **Ax, // values, Ax_size >= nrows*ncols * (type size)

292 // or Ax_size >= (type size), if iso is true

293 GrB_Index Ax_size, // size of Ax in bytes

294 bool iso, // if true, A is iso

45

295 const GrB_Descriptor desc

296) ;

297 #endif

298

299 GrB_Matrix C_temp;

300 LG_TRY (GrB_Matrix_new(&C_temp, GrB_FP64, n, n)) ;

301 LG_TRY (GxB_Matrix_pack_FullR(C_temp, (void **) &result,

result_size * sizeof(double), false, NULL)) ;

302

303 LG_TRY (GrB_assign(C_temp, A, NULL, C_temp, GrB_ALL, n, GrB_ALL, n,

GrB_DESC_RS)) ;

304

305 *C = C_temp;

306

307 //

--

308 // free workspace and return result

309 //

--

310

311 LG_FREE_WORK ;

312

313 if (print_timings)

314 {

315 tt = LAGraph_WallClockTime () - tt ;

316 printf ("LG_check_edgeBetweennessCentrality check time: %g sec\

n", tt) ;

46

317 }

318 return (GrB_SUCCESS) ;

319 }

47

APPENDIX: EXACT GRAPHBLAS ALGORITHM

Listing B.1: LAGr_EdgeBetweennessCentrality: edge betweenness-centrality

1 //

--

2 // LAGr_EdgeBetweennessCentrality: edge betweenness-centrality

3 //

--

4

5 // LAGraph, (c) 2019-2022 by The LAGraph Contributors, All Rights

Reserved.

6 // SPDX-Licene-Identifier: BSD-2-Clause

7 //

8 // For additional details (including references to third party source

code and

9 // other files) see the LICEnE file or contact permission@sei.cmu.edu.

See

10 // Contributors.txt for a full list of contributors. Created, in part,

with

11 // funding and support from the U.S. Government (see Acknowledgments.

txt file).

12 // DM22-0790

13

14 // Contributed by Casey Pei and Tim Davis, Texas A&M University;

15 // Adapted and revised from GraphBLAS C API Spec, Appendix B.4.

48

16

17 //

--

18

19 // LAGr_EdgeBetweennessCentrality: Exact algorithm for computing

20 // betweeness centrality.

21

22 // This is an Advanced algorithm (no self edges allowed)

23

24 //

--

25

26 #define useAssign

27 #define debug

28

29 #define LG_FREE_WORK \

30 { \

31 GrB_free (&frontier) ; \

32 GrB_free (&J_vec) ; \

33 GrB_free (&I_vec) ; \

34 GrB_free (&J_matrix) ; \

35 GrB_free (&I_matrix) ; \

36 GrB_free (&Fd1A) ; \

37 GrB_free (&paths) ; \

38 GrB_free (&bc_vertex_flow) ; \

39 GrB_free (&temp_update) ; \

40 GrB_free (&Add_One_Divide) ; \

49

41 GrB_free (&Update) ; \

42 if (Search != NULL) \

43 { \

44 for (int64_t i = 0 ; i < n ; i++) \

45 { \

46 GrB_free (&(Search [i])) ; \

47 } \

48 LAGraph_Free ((void **) &Search, NULL) ; \

49 } \

50 }

51

52 #define LG_FREE_ALL \

53 { \

54 LG_FREE_WORK ; \

55 GrB_free (centrality) ; \

56 }

57

58 #include "LG_internal.h"

59 #include <LAGraphX.h>

60

61 #undef LAGRAPH_CATCH

62 #define LAGRAPH_CATCH(status)

\

63 {

\

64 print ("LAGraph failure (file %s, line %d): status: %d", \

65 __FILE__, __LINE__, status) ;

\

50

66 LG_ERROR_MSG ("LAGraph failure (file %s, line %d): status: %d",

\

67 __FILE__, __LINE__, status) ;

\

68 LG_FREE_ALL ;

\

69 return (status) ;

\

70 }

71

72 #undef GRB_CATCH

73 #define GRB_CATCH(info)

\

74 {

\

75 printf ("GraphBLAS failure (file %s, line %d): info: %d", \

76 __FILE__, __LINE__, info) ;

\

77 LG_ERROR_MSG ("GraphBLAS failure (file %s, line %d): info: %d",

\

78 __FILE__, __LINE__, info) ;

\

79 LG_FREE_ALL ;

\

80 return (info) ;

\

81 }

82

51

83 //

--

84 // (1+x)/y function for double: z = (1 + x) / y

85 //

--

86

87 void add_one_divide_function (double *z, const double *x, const double

*y)

88 {

89 double a = (*(x)) ;

90 double b = (*(y)) ;

91 (*(z)) = (1 + a) / b ;

92 }

93

94 #define ADD_ONE_DIVIDE_FUNCTION_DEFN

\

95 "void add_one_divide_function (double *z, const double *x, const double

*y)\n" \

96 "{

\n" \

97 " double a = (*(x)) ;

\n" \

98 " double b = (*(y)) ;

\n" \

99 " (*(z)) = (1 + a) / b ;

\n" \

52

100 "}"

101

102 //

--

103 // LAGr_EdgeBetweennessCentrality: edge betweenness-centrality

104 //

--

105

106 int LAGr_EdgeBetweennessCentrality

107 (

108 // output:

109 GrB_Matrix *centrality, // centrality(i): betweeness centrality

of i

110 // input:

111 LAGraph_Graph G, // input graph

112 char *msg

113)

114 {

115

116 //

--

117 // check inputs

118 //

--

119

53

120 LG_CLEAR_MSG ;

121

122 // Array of BFS search matrices.

123 // Search[i] is a sparse matrix that stores the depth at which each

vertex is

124 // first seen thus far in each BFS at the current depth i. Each

column

125 // corresponds to a BFS traversal starting from a source node.

126 GrB_Vector *Search = NULL ;

127

128 // Frontier vector, a sparse matrix.

129 // Stores # of shortest paths to vertices at current BFS depth

130 GrB_Vector frontier = NULL ;

131

132 // Paths matrix holds the number of shortest paths for each node

and

133 // starting node discovered so far. A dense vector that is updated

with

134 // sparse updates, and also used as a mask.

135 GrB_Vector paths = NULL ;

136

137 // The betweenness centrality for each vertex. A dense vector that

138 // accumulates flow values during backtracking.

139 GrB_Vector bc_vertex_flow = NULL ;

140

141 // Update matrix for betweenness centrality for each edge. A sparse

matrix

142 // that holds intermediate centrality updates.

143 GrB_Matrix Update = NULL ;

54

144

145 // Binary operator for computing (1+x)/y in centrality calculations

146 GrB_BinaryOp Add_One_Divide = NULL ;

147

148 // Temporary vectors and matrices for intermediate calculations

149 // Diagonal values for J_matrix

150 GrB_Vector J_vec = NULL ;

151

152 // Diagonal values for I_matrix

153 GrB_Vector I_vec = NULL ;

154

155 // Matrix for previous level contributions

156 GrB_Matrix I_matrix = NULL ;

157

158 // Matrix for current level contributions

159 GrB_Matrix J_matrix = NULL ;

160

161 // Intermediate product matrix

162 GrB_Matrix Fd1A = NULL ;

163

164 // Temporary vector for centrality updates

165 GrB_Vector temp_update = NULL ;

166

167 GrB_Index n = 0 ; // # nodes in the graph

168

169 double t1_total = 0;

170 double t2_total = 0;

171 double t3_total = 0;

172

55

173 LG_ASSERT (centrality != NULL, GrB_NULL_POINTER) ;

174 (*centrality) = NULL ;

175 LG_TRY (LAGraph_CheckGraph (G, msg)) ;

176

177 GrB_Matrix A = G->A ;

178 #if 0

179 GrB_Matrix AT ;

180 if (G->kind == LAGraph_ADJACENCY_UNDIRECTED ||

181 G->is_symmetric_structure == LAGraph_TRUE)

182 {

183 // A and A’ have the same structure

184 AT = A ;

185 }

186 else

187 {

188 // A and A’ differ

189 AT = G->AT ;

190 LG_ASSERT_MSG (AT != NULL, LAGRAPH_NOT_CACHED, "G->AT is

required") ;

191 }

192 #endif

193

194 //

===

195 // === initialization

===

196 //

===

56

197

198 GRB_TRY (GxB_BinaryOp_new (&Add_One_Divide,

199 (GxB_binary_function) add_one_divide_function,

200 GrB_FP64, GrB_FP64, GrB_FP64,

201 "add_one_divide_function", ADD_ONE_DIVIDE_FUNCTION_DEFN)) ;

202

203 // Initialize the frontier, paths, Update, and bc_vertex_flow

204 GRB_TRY (GrB_Matrix_nrows (&n, A)) ;

205 GRB_TRY (GrB_Vector_new (&paths, GrB_FP64, n)) ;

206 GRB_TRY (GrB_Vector_new (&frontier, GrB_FP64, n)) ;

207 GRB_TRY (GrB_Matrix_new (&Update, GrB_FP64, n, n)) ;

208 GRB_TRY (GrB_Vector_new (&bc_vertex_flow, GrB_FP64, n)) ;

209

210

211 // Initialize centrality matrix with zeros using A as structural

mask

212 LG_TRY (GrB_Matrix_new(centrality, GrB_FP64, n, n)) ;

213 GRB_TRY (GrB_assign (*centrality, A, NULL, 0.0, GrB_ALL, n, GrB_ALL

, n, GrB_DESC_S)) ;

214

215 // Allocate memory for the array of S vectors

216 LG_TRY (LAGraph_Calloc ((void **) &Search, n+1, sizeof (GrB_Vector)

, msg)) ;

217

218 //

===

219 // === Breadth-first search stage

57

==

220 //

===

221

222 GrB_Index frontier_size, last_frontier_size = 0 ;

223 GRB_TRY (GrB_Vector_nvals (&frontier_size, frontier)) ;

224

225 int64_t depth, root ;

226 for (root = 0 ; root < n ; root++)

227 {

228 depth = 0 ;

229

230 // root frontier: Search [0](root) = true

231 GrB_free (&(Search [0])) ;

232 GRB_TRY (GrB_Vector_new(&(Search [0]), GrB_BOOL, n)) ;

233 GRB_TRY (GrB_Vector_setElement_BOOL(Search [0], (bool) true,

root)) ;

234

235 // clear paths, and then set paths (root) = 1

236 GRB_TRY (GrB_Vector_clear (paths)) ;

237 GRB_TRY (GrB_Vector_setElement (paths, (double) 1.0, root)) ;

238

239 GRB_TRY (GrB_Matrix_clear (Update)) ;

240

241 // Extract row root from A into frontier vector: frontier = A(

root,:)

242 GRB_TRY (GrB_Col_extract (frontier, NULL, NULL, A, GrB_ALL, n,

root,

58

243 GrB_DESC_T0)) ;

244

245 GRB_TRY (GrB_Vector_nvals (&frontier_size, frontier)) ;

246 GRB_TRY (GrB_assign (frontier, frontier, NULL, 1.0, GrB_ALL, n,

GrB_DESC_S)) ;

247

248 while (frontier_size != 0)

249 {

250 depth++ ;

251

252 //

--

253 // paths += frontier

254 // Accumulate path counts for vertices at current depth

255 //

--

256

257 GRB_TRY (GrB_assign (paths, NULL, GrB_PLUS_FP64, frontier,

GrB_ALL, n,

258 NULL)) ;

259

260 //

--

261 // Search[depth] = structure(frontier)

262 // Record the frontier structure at current depth

263 //

59

--

264

265 GrB_free (&(Search [depth])) ;

266 LG_TRY (LAGraph_Vector_Structure (&(Search [depth]),

frontier, msg)) ;

267

268 //

--

269 // frontier<!paths> = frontier * A

270 //

--

271

272 GRB_TRY (LG_SET_FORMAT_HINT (frontier, LG_SPARSE)) ;

273 GRB_TRY (GrB_vxm (frontier, paths, NULL, /*

LAGraph_plus_first_fp64 */

274 GxB_PLUS_FIRST_FP64, frontier,

275 A, GrB_DESC_RSC)) ;

276

277 //

--

278 // Get size of current frontier: frontier_size = nvals(

frontier)

279 //

--

60

280

281 last_frontier_size = frontier_size ;

282 GRB_TRY (GrB_Vector_nvals (&frontier_size, frontier)) ;

283 }

284

285

286 //

===

287 // === Betweenness centrality computation phase

============================

288 //

===

289

290 // bc_vertex_flow = ones (n, n) ; a full matrix (and stays full

)

291 GRB_TRY (GrB_Vector_new (&bc_vertex_flow, GrB_FP64, n)) ;

292 GRB_TRY (GrB_assign(bc_vertex_flow, NULL, NULL, 0.0, GrB_ALL, n

, NULL)) ;

293

294 GRB_TRY (GrB_Vector_new(&J_vec, GrB_FP64, n)) ;

295 GRB_TRY (GrB_Vector_new (&I_vec, GrB_FP64, n)) ;

296 GRB_TRY (GrB_Matrix_new (&Fd1A, GrB_FP64, n, n)) ;

297 GRB_TRY (GrB_Vector_new(&temp_update, GrB_FP64, n)) ; // Create

a temporary vector

298

299 // Backtrack through the BFS and compute centrality updates for

each vertex

61

300 // GrB_Index fd1_size;

301

302 // printf ("\n----------------------------- backtrack:\n") ;

303

304 while (depth >= 1)

305 {

306 // printf ("\n----------------------------- backtrack depth

: %" PRId64 "\n", depth) ;

307 GrB_Vector f_d = Search [depth] ;

308 GrB_Vector f_d1 = Search [depth - 1] ;

309

310 //

--

311 // j<S(depth, :)> = (1 + v) / p

312 // J = diag(j)

313 // Compute weighted contributions from current level

314 //

--

315

316 GRB_TRY (GrB_eWiseMult(J_vec, f_d, NULL, Add_One_Divide,

bc_vertex_flow, paths, GrB_DESC_RS)) ;

317 GRB_TRY (GrB_Matrix_diag(&J_matrix, J_vec, 0)) ;

318

319 //

--

320 // i<S(depth-1, :)> = p

62

321 // I = diag(i)

322 // Compute weighted contributions from previous level

323 //

--

324

325 GRB_TRY (GrB_Vector_extract (I_vec, f_d1, NULL, paths,

GrB_ALL, n, GrB_DESC_RS)) ;

326 GRB_TRY (GrB_Matrix_diag(&I_matrix, I_vec, 0)) ;

327

328 //

--

329 // Update = I x A x J

330 // Compute edge updates based on current level weights

331 //

--

332

333 double t1 = LAGraph_WallClockTime();

334 GRB_TRY(GrB_mxm(Fd1A, NULL, NULL, LAGraph_plus_first_fp64,

335 I_matrix, A, NULL));

336 t1 = LAGraph_WallClockTime() - t1;

337 t1_total += t1;

338

339 double t2 = LAGraph_WallClockTime();

340 GRB_TRY(GrB_mxm(Update, NULL, NULL,

GrB_PLUS_TIMES_SEMIRING_FP64,

341 Fd1A, J_matrix, NULL));

63

342 t2 = LAGraph_WallClockTime() - t2;

343 t2_total += t2;

344

345 //

--

346 // centrality<A> += Update

347 // Accumulate centrality values for edges

348 //

--

349

350 #ifdef useAssign

351 // centrality{A} += Update, using assign

352 double t3 = LAGraph_WallClockTime();

353 GRB_TRY (GrB_assign(*centrality, A, GrB_PLUS_FP64,

Update, GrB_ALL, n, GrB_ALL, n,

354 GrB_DESC_S));

355 t3 = LAGraph_WallClockTime() - t3;

356 t3_total += t3;

357 #else

358 // centrality = centrality + Update using eWiseAdd

359 double t3 = LAGraph_WallClockTime();

360 GRB_TRY (GrB_eWiseAdd (*centrality, NULL, NULL,

GrB_PLUS_FP64, *centrality, Update, NULL));

361 t3 = LAGraph_WallClockTime() - t3;

362 t3_total += t3;

363 #endif

364

64

365 //

--

366 // v = Update +.

367 // Reduce update matrix to vector for next iteration

368 //

--

369

370 GRB_TRY (GrB_reduce(temp_update, NULL, NULL,

GrB_PLUS_MONOID_FP64, Update, NULL)) ;

371 GRB_TRY (GrB_eWiseAdd(bc_vertex_flow, NULL, NULL,

GrB_PLUS_FP64, bc_vertex_flow, temp_update, NULL)) ;

372

373 // 24 d = d - 1

374 depth-- ;

375 }

376

377

378 }

379

380 #ifdef debug

381 printf(" I*A time: %g\n", t1_total);

382

383 printf(" (I*A)*J time: %g\n", t2_total);

384

385 #ifdef useAssign

386 printf(" Centrality update using assign time: %g\n",

t3_total);

65

387 #else

388 printf(" Centrality update using eWiseAdd time: %g\n",

t3_total);

389 #endif

390 #endif

391

392

393 //

===

394 // === finalize the centrality

===

395 //

===

396

397 LG_FREE_WORK ;

398 return (GrB_SUCCESS) ;

399 }

66

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	NOMENCLATURE
	INTRODUCTION
	Brandes' Traditional Algorithm
	The Exact Matrix EBC Algorithm

	METHODS
	SuiteSparse:GraphBLAS
	General Implementation Approach
	Brandes' Traditional EBC Algorithm Implementation
	The Exact Matrix EBC Algorithm

	RESULTS
	Testing Methods
	Accuracy
	Benchmarking

	CONCLUSION
	Future Work

	APPENDIX: BRANDE'S TRADITIONAL ALGORITHM
	APPENDIX: EXACT GRAPHBLAS ALGORITHM

