
Maximum Matching in Bipartite Graphs
using LAGraph

Christina Koutsou, Dr. Timothy Davis, Department of Computer Science & Engineering, Texas A&M University

Background and Motivation
Many graph algorithms are usually described periphrastically, instead of
realizing the underlying linear algebra operations performed. LAGraph is an
open-source selection of graph algorithms implemented using GraphBLAS,
a parallel and efficient framework for sparse matrices operations on an
extended algebra of semirings. The semiring operations can be chosen from
an extensive list (f.i. addition, min, max, multiplication, first value etc.) and
the usage of descriptors, such as considering only the structure of a matrix
and not its values, further increases flexibility and performance.
One group of algorithms that LAGraph currently misses is the one that
concerns bipartite graphs. These types of graphs are very useful to solve
problems between two types or groups of objects, clearly showing their
relationship with each other. Hence, bipartite graphs excel at solving
matching problems, such as assigning tasks to workers, and these types of
problems are frequently found in economics, biology, transportation and
many more fields. One of the most popular issues is the maximum matching
problem which refers to finding the maximum number of independent pairs
between sets. This project aims to implement the paper “Distributed-Memory
Algorithms for Maximum Cardinality Matching in Bipartite Graphs” by Dr.
Ariful Azad and Dr. Aydın Buluç using GraphBLAS, as the algorithm favors
parallelism and already makes use of linear algebra abstractions.

Algorithm
Most maximum matching algorithms rely on Depth-First Search (DFS),
meaning following one path at a time. This method is sequential and, thus,
can be very slow for large matrices. Breadth-First Search, however, is
highly parallelizable, as it provides the capability of exploring many paths
simultaneously. But the problem that arises from this is how can we ensure
that there are no items with the same match, or, in other words, how can we
ensure that the paths are disjoint? Let’s have a closer look at the algorithm
and how that is achieved.

Implementation

● Distributed-Memory Algorithms for Maximum Cardinality Matching in
Bipartite Graphs by Ariful Azad and Aydın Buluç

● GraphBLAS repository and User Guide:
https://github.com/DrTimothyAldenDavis/GraphBLAS

● LAGraph repository: https://github.com/GraphBLAS/LAGraph

Benchmarks

References

Consider this example of a bipartite graph. The
graph consists of two sets, the rows and the
columns, as denoted in the adjacency matrix. The
matches are recorded from the column’s
perspective. At each iteration, till there are no
paths left, we begin from the unmatched
columns and perform a single level of BFS.
For each row, the parent with the minimum id
is chosen and every child that stems from the
BFS is marked as visited, in order not to be
considered in other paths later on. This way,
the paths stay independent. In the example, all

rows are unmatched in the beginning, so we end up with the matches shown
in bold in Figure 2.

Figure 1: Bipartite graph

Since there are still paths to be explored, the
algorithm continues with the next iteration. This
time, the only unmatched column is c4, so the
result of the single BFS step includes only r4.
However, r4 is already matched, hence we dive
deeper in this path and get redirected to the mate
of r4, c3. The only unvisited node stemming from
its BFS is r3, which is again matched. We
continue traversing the path in the same fashion
until we find an unvisited and unmatched row- in
our case, r2. This path is now marked as finished
and since there are no other paths at the mo-

ment the algorithm moves to updating the mates
of the columns and rows respectively.
The unmatched row of each path is matched to its
parent, which is the first parent column
encountered depth-wise. Afterwards, the rows
previously matched with these columns are
matched with their parents etc. As a result, in the
presented example, we end up with the match
shown in Figure 3 instead.
Essentially, the algorithm explores alternate
paths by reversing an already traversed path
to see if one of the already matched columns
encountered in the path has at least one free
child to be matched with instead.

Figure 2: First iteration matches

Figure 3: Alternate matchings,
Maximum Matching of the

Bipartite graph

Speedup: (1) x4 times faster, (2) x417 times faster, (3) x199 times faster

https://github.com/DrTimothyAldenDavis/GraphBLAS
https://github.com/GraphBLAS/LAGraph

