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Background and Motivation
Many graph algorithms are usually described periphrastically, instead of 
realizing the underlying linear algebra operations performed. LAGraph is an 
open-source selection of graph algorithms implemented using GraphBLAS, 
a parallel and efficient framework for sparse matrices operations on an 
extended algebra of semirings. The semiring operations can be chosen from 
an extensive list (f.i. addition, min, max, multiplication, first value etc.) and 
the usage of descriptors, such as considering only the structure of a matrix 
and not its values, further increases flexibility and performance.
One group of algorithms that LAGraph currently misses is the one that 
concerns bipartite graphs. These types of graphs are very useful to solve 
problems between two types or groups of objects, clearly showing their 
relationship with each other. Hence, bipartite graphs excel at solving 
matching problems, such as assigning tasks to workers, and these types of 
problems are frequently found in economics, biology, transportation and 
many more fields. One of the most popular issues is the maximum matching 
problem which refers to finding the maximum number of independent pairs 
between sets. This project aims to implement the paper “Distributed-Memory 
Algorithms for Maximum Cardinality Matching in Bipartite Graphs” by Dr. 
Ariful Azad and Dr. Aydın Buluç using GraphBLAS, as the algorithm favors 
parallelism and already makes use of linear algebra abstractions.

Algorithm
Most maximum matching algorithms rely on Depth-First Search (DFS), 
meaning following one path at a time. This method is sequential and, thus, 
can be very slow for large matrices. Breadth-First Search, however, is 
highly parallelizable, as it provides the capability of exploring many paths 
simultaneously. But the problem that arises from this is how can we ensure 
that there are no items with the same match, or, in other words, how can we 
ensure that the paths are disjoint? Let’s have a closer look at the algorithm 
and how that is achieved.

Implementation

● Distributed-Memory Algorithms for Maximum Cardinality Matching in 
Bipartite Graphs by Ariful Azad and Aydın Buluç

● GraphBLAS repository and User Guide: 
https://github.com/DrTimothyAldenDavis/GraphBLAS

● LAGraph repository: https://github.com/GraphBLAS/LAGraph
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Consider this example of a bipartite graph. The     
graph consists of two sets, the rows and the 
columns, as denoted in the adjacency matrix. The 
matches are recorded from the column’s 
perspective. At each iteration, till there are no 
paths left, we begin from the unmatched 
columns and perform a single level of BFS. 
For each row, the parent with the minimum id 
is chosen and every child that stems from the 
BFS is marked as visited, in order not to be 
considered in other paths later on. This way, 
the paths stay independent. In the  example,  all 

rows are unmatched in the beginning, so we end up with the matches shown 
in bold in Figure 2.

Figure 1: Bipartite graph

Since there are still paths to be explored, the 
algorithm continues with the next iteration. This 
time, the only unmatched column is c4, so the 
result of the single BFS step includes only r4. 
However, r4 is already matched, hence we dive 
deeper in this path and get redirected to the mate 
of r4, c3. The only unvisited node stemming from 
its BFS is r3, which is again matched. We 
continue traversing the path in the same fashion 
until we find an unvisited and unmatched row- in 
our case, r2. This path is now marked as finished 
and   since   there   are   no  other paths at the mo-

ment the algorithm moves to updating the mates 
of the columns and rows respectively. 
The unmatched row of each path is matched to its 
parent, which is the first parent column 
encountered depth-wise. Afterwards, the rows 
previously matched with these columns are 
matched with their parents etc. As a result, in the 
presented example, we end up with  the match 
shown in Figure 3 instead.
Essentially, the algorithm explores alternate 
paths by reversing an already traversed path 
to see if one of the already matched columns 
encountered in the path has at least one free 
child to be matched with instead.

Figure 2: First iteration matches

Figure 3: Alternate matchings, 
Maximum Matching of the 
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Speedup: (1) x4 times faster, (2) x417 times faster, (3) x199 times faster 

https://github.com/DrTimothyAldenDavis/GraphBLAS
https://github.com/GraphBLAS/LAGraph

