
GRAPH CLUSTERING ALGORITHMS IN GRAPHBLAS

An Undergraduate Research Scholars Thesis

by

CAMERON QUILICI

Submitted to the LAUNCH: Undergraduate Research office at
Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by
Faculty Research Advisor: Dr. Tim Davis

May 2024

Majors: Computer Science
Applied Mathematics

Copyright © 2023. Cameron Quilici.

RESEARCH COMPLIANCE CERTIFICATION

Research activities involving the use of human subjects, vertebrate animals, and/or biohaz-

ards must be reviewed and approved by the appropriate Texas A&M University regulatory research

committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement applies

to activities conducted at Texas A&M and to activities conducted at non-Texas A&M facilities

or institutions. In both cases, students are responsible for working with the relevant Texas A&M

research compliance program to ensure and document that all Texas A&M compliance obligations

are met before the study begins.

I, Cameron Quilici, certify that all research compliance requirements related to this Under-

graduate Research Scholars thesis have been addressed with my Faculty Research Advisor prior to

the collection of any data used in this final thesis submission.

This project did not require approval from the Texas A&M University Research Compli-

ance & Biosafety office.

TABLE OF CONTENTS

Page

ABSTRACT . 1

DEDICATION . 2

ACKNOWLEDGMENTS . 3

NOMENCLATURE . 4

1. INTRODUCTION. 5

1.1 Mathematical Background . 5
1.2 Graph Clustering . 12
1.3 GraphBLAS and LAGraph Overview . 14

2. METHODS . 16

2.1 Basics of SuiteSparse:GraphBLAS . 17
2.2 Peer Pressure Implementation . 19
2.3 Markov Cluster Implementation. 27

3. RESULTS. 32

3.1 Quality Metrics . 32
3.2 Benchmarking Results . 39

4. CONCLUSION. 43

REFERENCES . 44

ABSTRACT

Graph Clustering Algorithms in GraphBLAS

Cameron Quilici
Department of Computer Science and Engineering

Texas A&M University

Faculty Research Advisor: Dr. Tim Davis
Department of Computer Science and Engineering

Texas A&M University

Graph theory has long served as a cornerstone for computational problems among various do-

mains. Hence, the development of graph algorithms has proved to be one of the most pronounced

focuses in the field of computer science. Among the most recent developments in this field is

the emergence of linear algebra as a tool for addressing graph related problems. GraphBLAS,

an open-source API specification, realizes this intrinsic connection by providing a framework for

constructing graph algorithms in the language of linear algebra. Graph clustering is the process of

determining natural groups of nodes with relatively high connectivity in a graph structure. The Peer

Pressure and Markov Cluster algorithms are two unsupervised processes which capitalize on linear

algebraic principles to efficiently identify clusters within graphs. This paper aims to walk through

the development and implementation of both algorithms using the SuiteSparse:GraphBLAS C API,

with the additional goal of fostering intuition for crafting graph algorithms from a linear algebraic

perspective. Our implementations will be added to the LAGraph repository, a collection of algo-

rithms implemented using GraphBLAS. Additionally, we provide a suite of metrics which can be

used to quantitatively measure the quality of a graph clustering. We demonstrate that our quality

metrics surpass the speed of existing implementations and our clustering algorithms yield reason-

able clusterings efficiently, even on large graphs.

1

DEDICATION

To my mother, for giving me the opportunity to receive an education.

2

ACKNOWLEDGMENTS

Contributors

I would like to thank my faculty advisor, Dr. Tim Davis, for his guidance and support

throughout my research. My success in this project would not have been possible without him.

I would also like to thank my wonderful girlfriend, Addison, for providing me with en-

couragement and love in addition to constantly helping me stay hopeful, even during particularly

stressful periods.

Finally, thanks to Gábor Szárnyas for granting me permission to adopt the style of his "In-

troduction to GraphBLAS" slideshow presentation. Additionally, I am thankful for his generosity

in sharing the source slides with me.

The source code for the SuiteSparse:GraphBLAS C API as well as the LAGraph repository

utilized in order to develop the programs contained in this document was provided by Dr. Tim

Davis, along with several additional contributors.

All other work conducted for the thesis was completed by the student independently.

Funding Sources

Undergraduate research was supported by Dr. Tim Davis at Texas A&M University.

3

NOMENCLATURE

BLAS Basic Linear Algebra Subroutine

API Application Programming Interface

PPC Peer Pressure Clustering

MCL Markov Cluster Algorithm

A ∈ Dn×n n× n adjacency matrix with elements over domain D

v ∈ Dn length n column vector with entries over domain D

Aij the entry in row i, column j of the matrix A

vi the ith entry of the vector (row or column) v

AT the transpose of A

tr(A) the trace of A

G = (V,E) the graph G with vertex set V and edge set E

R the set of real numbers

R≥0 the set of non-negative real numbers

Z the set of integers

N the set of natural numbers

B the set {0, 1} (booleans)

4

1. INTRODUCTION

1.1 Mathematical Background

1.1.1 Graph Theory

A graph is a pair G = (V,E) such that E ⊆ [V]2, where [V]2 = {{u, v} | u, v ∈ V, u ̸= v}.

That is, elements of E are 2-element subsets of V , with the exception of self-loops. The elements

of V are called the vertices and the elements of E are called the edges of the graph G. An edge

e ∈ E can be denoted as {x, y} or more commonly xy, denoting an edge between vertex x and y.

Figure 1: The graph G1 on the set of vertices V = {1, . . . , 6} with
E = {{1, 3}, {1, 2}, {2, 3}, {2, 4}, {3, 5}, {4, 5}}.

The vertex and edge sets of a particular graph are denoted V and E, respectively. The order of

a graph is denoted as |G| and refers to the number of vertices of a graph. For example, the graph

in Figure 1 has the property |G1| = |V | = 6. A vertex v is incident with an edge e if v ∈ e and we

say e is an edge at v. There is also the notion of a non-edge, which is a possible edge in G which

does not exist. For instance, in G1, {6, 4} is a non-edge. Furthermore, the set of all edges e ∈ E

at a vertex v is denoted E(v). The degree dG(v) (or simply d(v) when the reference of a particular

graph is clear) of a vertex v is equal to |E(v)|, the number of edges at v. For instance, dG1(2) = 3

and dG1(6) = 1 [1].

5

Let G = (V,E) and G′ = (V ′, E ′). Then G ∪ G′ = (V ∪ V ′, E ∪ E ′) and G ∩ G′ =

(V ∩ V ′, E ∩ E ′). When G ∩ G′ = ∅, G and G′ are disjoint. When V ′ ⊆ V and E ′ ⊆ E, G′ is a

subgraph of G, denoted G′ ⊆ G.

Figure 2: A subgraph G′
1 ⊆ G1.

There is also the notion of directed graphs, a pair G = (V,E) where the set of arcs (or directed

edges) E is defined as E = {(u, v) | u, v ∈ V × V }. In this way, edges between vertices have

direction, and self-loops are possible.

Figure 3: The directed graph G2 on the set of vertices V = {1, . . . , 6} with
E = {(1, 2), (2, 3), (3, 1), (3, 5), (2, 4), (2, 3), (6, 6)}.

In a directed graph, each vertex has an in-degree and an out-degree, the number of edges

coming into the vertex and the number of edges leaving the vertex, respectively. We denote d+(v)

as the out-degree and d−(v) as the in-degree of vertex v. In G2, d+(5) = 0 and d−(5) = 2.

6

1.1.2 Linear Algebraic Formulation

All finite graphs can be expressed as an adjacency matrix. The adjacency matrix A ∈ Bn×n

of an unweighted graph G is defined by

Aij :=

{
1 if vivj ∈ E

0 otherwise.
(1)

When displaying adjacency matrices, we will not write any implicit zeros, i.e., if vivj ̸∈ E, then

Aij is simply blank (see Figure 4 below). Further, the dimension of A representing a graph G is

necessarily |G| × |G| for finite graphs.

Figure 4: Two equivalent visual representation of the 6× 6 adjacency matrix A representing G2

from Figure 3. Oftentimes when the edges are unweighted, the representation depicted
on the right is more clear.

Given this representation, there is an intrinsic relationship between linear algebra and graph

algorithms. One can learn many properties of a particular graph just from an adjacency matrix

alone. For instance, let A ∈ Nn×n. One can quickly compute the out-degree of the ith vertex by

computing
∑n

j=1Aij and compute the in-degree of the j th vertex by computing
∑n

i=1 Aij . Con-

sider the matrix A from our working example and we can clearly see that the out-degree of vertex

2 is 2. Next, consider the squaring via standard matrix multiplication of A as shown in Figure 5.

The resulting matrix A2 ∈ Nn×n has the property that Aij = m if and only if there exist m paths of

length 2 from vertex i to vertex j. The figure indicates that A25 = 2 and indeed, there are 2 paths of

length 2 from vertex 2 to vertex 5 (highlighted in green). In fact, it can be verified that Ak ∈ Nn×n

gives the number of paths of length k ∈ N from vertex i to vertex j. While some properties of

7

graphs can be realized via the standard matrix multiplication procedure (with addition and multi-

plication), this process is often too restrictive in the context of graph algorithms. For instance, if

the domain of the entries of an adjacency matrix are not a subset of R, then "addition" and "mul-

tiplication" may not be well-defined operations. Furthermore, for certain graph algorithms, one

may want to consider, say, the minimum of two entries in a matrix-matrix/vector-matrix "multiply"

rather than their product. One way to achieve this is to use a broader definition of matrix and vector

multiplication using semirings.

Figure 5: Matrix squaring relation to paths of length 2 in a graph.

1.1.3 Semirings

A semiring is an algebraic structure ⟨D,⊕,⊗, 0⟩, with D a non-empty set, on which we

have defined operations of "addition" and "multiplication" which satisfy the following properties

[2]:

(1) ⟨D,⊕⟩ is a commutative monoid with identity element 0;

(2) ⟨D,⊗⟩ is a monoid with identity element 1 ̸= 0;

(3) a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) and (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) ∀a, b, c ∈ D;

(4) 0⊗ a = 0 = a⊗ 0 ∀a ∈ D.

8

In the context of GraphBLAS, the requirement that ⟨D,⊗⟩ is a monoid (point 2 above) is omitted.

That is, ⟨D,⊗⟩ can be any closed binary operator. A semiring that meets these weaker require-

ments is referred to as a GraphBLAS semiring.

Importantly, matrix multiplication can be performed on various semirings. Let A,B,C ∈

Rn×n. Using the conventional semiring such that ⊕ := + and ⊗ := ·, matrix multiplication is

defined by

C = AB

Cij =
n∑

k=1

Aik ·Bkj (2)

for each i, j ∈ {0, 1, . . . , n}. This formula can be generalized with the notion of semirings. Let

⟨D,⊕,⊗, 0⟩ be a GraphBLAS semiring and A,B,C ∈ Dn×n, then the matrix "multiplication" of

A and B is defined as

C = A⊕ .⊗B

Cij =
n⊕

k=1

Aik ⊗Bkj. (3)

A matrix is sparse if most of its entries are zero. Most adjacency matrices are sparse since graphs

often have relatively few connections per node. Let Hi denote the collection of column indices of

nonzero entries in row i of matrix A and let Kj denote the collection of row indices of nonzero

entries in column j of matrix B. Then we can further generalize Equation 3 to sparse matrix

multiplication as follows:

C = A⊕ .⊗B

Cij =
⊕

k∈Hi∩Kj

Aik ⊗Bkj. (4)

That is, the ⊗ operator is only applied where an entry is present in both A and B.

1.1.4 Motivating Example

With this generalized concept of matrix multiplication, we can now begin to realize the lin-

ear algebraic formulation of some important graph algorithms. As a motivating example, consider

9

a linear algebraic formulation of the Bellman-Ford algorithm for the single-source shortest path

(SSSP) problem. Given a graph G = (V,E), the SSSP problem involves finding the shortest paths

from some vertex v ∈ V to all other vertices in V .

Figure 6: The weighted directed graph G3 (left) and its weighted adjacency matrix representation
A (right). Note, when Aij is blank, the entry is implicitly zero and takes on the value of
the respective semiring’s additive identity, in this case +∞. However, Aij = 0 (on the

diagonal) indicates that each vertex can reach itself with distance 0.

Developing linear algebraic formulations for graph algorithms involves making connections

between matrix and graph operations and then expanding on these ideas via semirings. For SSSP,

we would like to find the shortest cumulative paths from one vertex to all other vertices. Let

G = (V,E) be a weighted directed graph and A ∈ Rn×n
≥0 be its adjacency matrix representation.

Further, let vs ∈ V be the source vertex and v(0) be the row vector of dimension 1×n such that the

sth entry in v, vs, is equal to 1 and all other entries are equal to 0. If we modify the matrix A to be

unweighted such that Aij = 1 if and only if there is an edge between vi and vj , then with standard

vector-matrix multiplication, one can see that the operation

v(1) = v(0)A (5)

gives precisely the vertices "one hop" away from vs. That is, v(1)i = 1 if and only if there exists

a path of length 1 from vs to vi. Moreover, the operation v(2) = v(1)A gives the number of paths

of length 2 from vertex s to every other vertex, so on and so forth. For SSSP, we instead want to

capture the minimum cumulative path from vs to all other vertices. Hence, we will use the so-called

“min-plus” semiring where D = R∪ {+∞}, ⊕ := min, ⊗ := +, and the additive identity is +∞.

10

Now, setting vs equal to 0 and all other entries to +∞ (the identity with respect to the min binary

operator), we can modify Equation 5 to obtain

v(1) = v(0) ⊕ .⊗A

= v(0)min .+A

and we get that v(1) holds the minimum cumulative weights from vs to vertices one hop away from

it. Continuing these operations n− 1 times, we obtain

v(1) = v(0)min .+A

v(2) = v(1)min .+A

...

v(n−1) = v(n−2)min .+A (6)

and v(n−1) holds the shortest path lengths from vs to all vertices n− 1 hops away from vs. In other

words, v(n−1) holds the shortest path from vertex s to every other vertex in the graph. Thus, we

have solved the SSSP problem using only vector-matrix multiplication over a non-conventional

semiring.

Figure 7 gives an example of this algorithm. The blue vertex represents the source vertex,

the purple vertices represent those vertices on the frontier, and the gray vertices represent those

vertices which have already been reached from the source. Moreover, the green highlights the

values (edges) which are involved in the vector-matrix multiplication at each iteration.

11

Figure 7: Example of the SSSP linear algebraic algorithm on G3 from Figure 7. There are three
iterations before a steady state is reached and the diagram is read from left to right, top
to bottom. The bottom right figure demonstrates the shortest path found from vertex 1

to 6.

1.2 Graph Clustering

Since graphs mostly always represent networks of connections, a natural question to ask is

how to best group their vertices into clusters such that there are more connections (edges) within

clusters than there are between clusters. That is, the task of graph clustering is to find highly

intra-connected groups of vertices. This process is highly applicable to many field such as social

network analysis, machine learning, and biological pathway analysis.

Let G be a graph such that |G| = n. A clustering (or partition) CG is a collection of k

disjoint subgraphs of G such that 1 ≤ k ≤ n. That is,

CG = {C1, C2, . . . , Ck} (7)

where
⋂

1≤i≤k Ci = ∅,
⋃

1≤i≤k Ci = V , C1, . . . , Ck ⊆ G, and the vertices v ∈ Ci are similar

or connected in some predefined way [3]. Oftentimes, each individual Ci is called a cluster or

12

a community. Note that |CG| ≤ |G| for any graph. An edge between two vertices within the

same cluster is called an intra-cluster edge and an edge between two vertices not within the same

cluster is called an inter-cluster edge. Moreover, a possible intra/inter-cluster edge which does

not exist is called an intra/inter-cluster non-edge, respectively. We denote Eintra, Einter ⊆ E as

Eintra = {(i, j) ∈ E,Ci = Cj} and Einter = {(i, j) ∈ E,Ci ̸= Cj} to be the sets of intra-cluster

and inter-cluster edges, respectively. Furthermore, we denote Nintra = {(i, j) ̸∈ E,Ci = Cj}

and Ninter = {(i, j) ̸∈ E,Ci ̸= Cj} to be the sets of intra-cluster and inter-cluster non-edges,

respectively.

There are many possible clusterings of a graph and, as mentioned before, what makes a

particular clustering better than another is based on some metric of "similarity" or "connectedness."

Later in this paper (see Results), we will discuss in depth some of the quality metrics used in order

to quantitatively identify clusterings as "good" or "bad."

In this paper, we present two clustering algorithms with their SuiteSparse:GraphBLAS im-

plementations.

1.2.1 Peer Pressure Clustering

The Peer Pressure Clustering (PPC) algorithm gets its name from the fact that a vertex’s

cluster assignment is propagated outwards towards its neighbors. That is, any given vertex will

be put in the same cluster as the majority of its neighbors; it will be pressured by its peers. The

algorithm was first proposed by A. Shah in his PhD thesis [4]. The algorithm begins by designating

each vertex to its own cluster and then iteratively refines the cluster assignments of neighboring

vertices via a weighted voting process. The weight of a particular vertex’s vote can either be

proportional to its edge weight, or proportional to its edge weight normalized by its out-degree.

The latter is favorable when there are many vertices with very high out-degrees, so that these

vertices do not dominate the influence on neighboring vertices. After each round of voting, each

vertex counts its total received votes from all other clusters and then joins the cluster from which

it received the maximum number of votes. If there is a tie between two clusters, the one with the

minimum index is chosen, which makes the process deterministic. The algorithm terminates when

13

the clustering reaches a steady-state, i.e., when no vertex changes clusters between subsequent

iterations. Unfortunately, convergence is not always guaranteed, especially on graphs which have

very little natural community structure. As a result of this, the algorithm can be modified to

terminate whenever the percentage of total cluster assignments between subsequent iterations falls

below some predefined small threshold.

1.2.2 Markov Clustering

The Markov Cluster Algorithm (MCL) was first proposed by S. Dongen [5] in his PhD

thesis and works by simulating random walks within a graph to explore its community structure.

The fundamental idea is that a random walk, when initiated within a cluster, is more likely to

remain within that cluster due to the higher density of connections as compared to inter-cluster

connections. Given an adjacency matrix representation A ∈ Rn×n
≥0 of a graph G = (V,E) with n

vertices, the algorithm first normalizes each column of A (so that its sum is 1), ensuring that they

are stochastic. Call this normalized version of A the transfer matrix and denote it as T. Then Tij

denotes the probability of a transition from vertex i to vertex j. The expansion phase raises T to

the eth power (expansion parameter) to simulate random walks of length e across the graph. Now,

Tij gives the probability of a 2-hop walk from vertex i to j. Subsequently, the inflation phase raises

each element of T to the power of r (inflation parameter). This step increases the contrast between

small differences in probabilities. Finally, the columns are again normalized and the process is

repeated until convergence. Once a steady state transfer matrix is reached, rows with at least one

positive value correspond to an attractor vertex which attracts the vertices corresponding to the

column indices of the positive entries within the row.

1.3 GraphBLAS and LAGraph Overview

1.3.1 GraphBLAS

The GraphBLAS standard formalizes the notion of graph algorithms as linear algebraic

operations by providing a set of well-defined matrix and vector operations based on semirings [6].

In other words, the standard aims to provide a consistent set of “building blocks" which can be

14

used to create graph algorithms in the language of linear algebra.

SuiteSparse:GraphBLAS is the first reference implementation of the GraphBLAS stan-

dard [7] and provides a set of methods which can be used to modify the objects defined in the

C API Specification. In particular, this implementation focuses on sparse matrix operations. As

we have noted, most adjacency matrix representations of graphs are sparse. Much work has already

been done to optimize sparse matrix operations, and SuiteSparse:GraphBLAS realizes significant

speedup by employing such work while abstracting away technical details from the programmer.

In turn, users are able to implement a wide range of graph algorithms very efficiently while using

simple user-level code.

1.3.2 LAGraph

The LAGraph repository is a community effort which aims to provide a centralized collection

of graph algorithms implemented using GraphBLAS [8]. Not only does this allow researchers to

methodically evaluate the coverage of graph algorithms using linear algebra, but it also acts as

a resource for programmers and researchers in the field. As of March 2024, LAGraph includes

many novel graph algorithms such as Page Rank, SSSP, and triangle counting. Additionally, the

repository includes many more “experimental" graph algorithms (codes which are still under de-

velopment) such as coarsening, matching, Fast Graphlet Transform, and many more.

While great progress has been made in this effort, there are still many more algorithms left to

be implemented in the language of linear algebra. The ultimate goal of our project is to utilize

SuiteSparse:GraphBLAS to develop the Peer Pressure and Markov Clustering algorithms, along

with a few graph clustering quality metrics, and then add the implementations to the LAGraph

repository.

15

2. METHODS

In this section, we present a comprehensive breakdown of the Peer Pressure and Markov

clustering algorithms, utilizing the SuiteSparse:GraphBLAS C API for our exposition. Our objec-

tive is to guide the reader through each implementation phase. This approach is designed to provide

a clear and detailed understanding of the algorithms’ overarching linear algebraic structure while

also providing the corresponding SuiteSparse:GraphBLAS code. The following implementations

are written in the C programming language. Therefore, some prior knowledge of the language is

expected of the reader.

Figure 8: The unweighted directed graph (left) and its adjacency matrix representation A (right).
Note, despite being an unweighted graph, the domain of A is R and an edge is

represented as a 1.

The directed graph G and adjacency matrix A ∈ R10×10 in Figure 8 will be our working

example as we illustrate the implementations of these clustering algorithms using GraphBLAS.

For the purposes of these algorithms, an edge is represented by a real-valued weight of 1. It is

important to note that while our working example is a directed unweighted graph, both algorithms

described in this chapter work on undirected and/or weighted graphs.

In order to better explain some codes, we will sometimes reference particular parts of a line

16

of code using a "footnote" of the form #1.#2 , both inline (the code) and in the body of the paper. The

#1 references the corresponding figure and the #2 is the specific footnote index within the figure.

2.1 Basics of SuiteSparse:GraphBLAS

In this section, we introduce some of the functions used in the following sections as well as

insight into the basic structure of our implementations within the LAGraph repository.

The SuiteSparse:GraphBLAS API provides users a collection of various methods which

are used to interface with each of the following objects: GrB_Matrix, GrB_Vector, GrB_Type

specifies values stored in a GraphBLAS matrix/vector, GrB_UnaryOp specifies a unary operator,

GrB_IndexUnaryOp specifies a type of unary operator that also operates on the index of a value,

GrB_BinaryOp specifies a binary operator, GrB_Monoid specifies a monoid (an associative and

commutative binary operator), GrB_Semiring specifies a GraphBLAS semiring, GrB_Descriptor

specifies certain parameters which can be passed to a GraphBLAS method to modify its behavior,

and GrB_Scalar specifies some scalar value [7]. Many of these objects, such as GrB_Semiring,

provide support for user-defined objects which allows for maximum expressivity and ease-of-use

in the graph algorithm design process.

In this chapter, we will detail the GraphBLAS methods used in our work, explaining each

as we come across them. For brevity, we will not include the declaration and initialization of all

objects used; the reader may assume that any objects passed to a method are either built-in or

already exist. The following code generalizes the process of creating and initializing GraphBLAS

objects.

1 GrB_Matrix M = NULL ;
2 GrB_Vector v = NULL ;
3

4 // GrB_Index used to store matrix dimensions, equivalent to uint64_t
5 GrB_Index n = 10 ;
6 GrB_Matrix_new(&M, GrB_INT64, n, n) ;
7 GrB_Vector_new(&v, GrB_INT64, n) ;

Figure 9: Declaring GraphBLAS objects in SuiteSparse:GraphBLAS. This creates an n-by-n
matrix M and a vector v of length n, where M and v have entries of type int_64t.

17

2.1.1 LAGraph Basics

As previously mentioned, LAGraph is a repository which allows users to easily implement

graph algorithms on top of the GraphBLAS framework. As such, LAGraph both provides sup-

plemental data structures (which are not a part of the GraphBLAS standard) and sets forth some

conventions for creating graph algorithms using GraphBLAS. The most important data structure

that LAGraph provides, and one that we use throughout this paper, is the LAGraph_Graph. This

data structure holds important information about a graph, such as its adjacency matrix A, its type

(directed, undirected), and other cached properties such as A^T.

1 struct LAGraph_Graph_struct
2 {
3 GrB_Matrix A ; // the adjacency matrix of the graph
4 LAGraph_Kind kind ; // the kind of graph
5

6 // cached properties of the graph
7 GrB_Matrix AT ; // the transpose of A, with the same type
8 GrB_Vector out_degree ;
9 GrB_Vector in_degree ;

10 LAGraph_Boolean is_symmetric_structure ;
11 int64_t nself_edges ; // number of entries on the diagonal of A
12 GrB_Scalar emin ; // minimum edge weight
13 LAGraph_State emin_state ; // VALUE, BOUND, or UNKNOWN
14 GrB_Scalar emax ; // maximum edge weight
15 LAGraph_State emax_state ; // VALUE, BOUND, or UNKNOWN
16 } ;
17

18 typedef struct LAGraph_Graph_struct *LAGraph_Graph ;

Figure 10: Code representing the data structure LAGraph_Graph.

Furthermore, LAGraph sets forth a convention for algorithm function headers, described

by the code shown in Figure 11 [9].

18

1 int graph_algorithm
2 (
3 // outputs
4 TYPE *out1, TYPE *out2, ...
5 // input/output
6 TYPE inout,
7 // inputs
8 TYPE input1, TYPE input2, ...
9 // error message holder

10 char *msg
11) ;

Figure 11: General function header for an LAGraph algorithm.

2.2 Peer Pressure Implementation

The heart of the Peer Pressure algorithm lies in the notion of vertices "voting" for their

immediate neighbors to be in the cluster in which they reside. In order to capture this idea with

a linear algebraic formulation, consider the following. Suppose G = (V,E) is a graph with n

vertices and let A ∈ Rn×n be its adjacency matrix representation. Furthermore, suppose CG is

some clustering of G. Define C ∈ BN×N to be the cluster matrix where Cij = 1 if and only if

vj ∈ Ci and define T ∈ Rn×n to be the tally matrix where Tij = k implies there are k votes for vj

to be included in Ci. This formulation was originally posed by E. Robinson in Chapter 6 of "Graph

Algorithms in the Language of Linear Algebra" [10, 11].

With this formulation, the voting phase can be easily represented as T = C + . secondA.

To see this intuitively, recall Equation 4 which describes a sparse matrix-matrix multiply

T = C+ . secondA

Tij =
∑

k∈Hi∩Kj

second(Cik, Akj)

=
∑

k∈Hi∩Kj

Akj, (8)

recalling that Hi denotes the collection of column indices of nonzero entries in row i and Kj

denotes the collection of row indices of nonzero entries in column j. Note that the "second" binary

operator works for this operation since all entries in C are 1, so this is effectively the same as using

19

the traditional plus-times semiring. In fact, using the plus-second semiring is actually faster, since

values of C need not be accessed. For a particular vertex vj , Equation 8 captures the notion of

tallying up all votes from neighbors in cluster Ci and letting that number the the overall vote for vj

to gain membership into cluster Ci.

The function header for the PPC algorithm implementation is shown in Figure 12.

1 int LAGr_PeerPressureClustering(
2 // output:
3 GrB_Vector *c_f, // output cluster vector
4 // input:
5 bool normalize, // if true, normalize the input graph via out-degree
6 bool make_undirected, // if true, make G undirected which generally leads

to a coarser partitioning↪→

7 double thresh, // convergence threshold
8 int max_iter, // maximum number of iterations
9 LAGraph_Graph G, // input graph

10 char *msg
11) ;

Figure 12: Function header for the Peer Pressure Algorithm LAGraph implementation.

In order to ensure that each vertex has some initial desire to stay in its own cluster, it is

desirable to ensure that each vertex has a self-loop, i.e., each vertex gets to vote for itself to remain

in its current cluster. This can be achieved with the following code:

1 // ones := vector of length n of all 1
2 GrB_Vector_assign(ones, NULL, NULL, 1, GrB_ALL, n, NULL);
3 GrB_Matrix_diag(&I, ones, 0);
4 GrB_Matrix_eWiseAdd(A, A 13.1 , NULL, GrB_PLUS_FP64, A, I, GrB_DESC_SC 13.2);

Figure 13: Adding self-edges to a graph.

In line 2 of Figure 13, the GrB_Vector_assign method assigns the floating point value

1 to every index (GrB_ALL) for n entries. This then allows us to create the identity matrix In

via a call to the GrB_Matrix_diag which sets the diagonal of the input matrix to the entries in

ones. Line 4 captures the idea of adding a self-loop to each vertex by performing an element-wise

addition of the elements of A and In only where the values of A are empty, which prevents any

20

modifications to a vertex which already has a self-loop. This idea of limiting where a computation

takes place is called masking and is extremely important for many GraphBLAS operations as it can

speed up certain computations. In line 4, the matrix A 13.1 is passed as the mask and the descriptor

GrB_DESC_SC 13.2 indicates that the mask should be complemented and should be structural instead

of valued, i.e., perform the operation only where A has no existing entries. Again, in this case the

mask is used in order to prevent adding 1 to a diagonal element (self-edge) which already existed.

Figure 14: Illustration of the GrB_Matrix_eWiseAdd from the code snippet shown in Figure 13.
In GraphBLAS notation, this operation may be expressed as A⟨A⟩ = A+ I.

Depending on the desired outcome, it may be preferable to normalize the voting strength

of vertices by their out-degree. This is analogous to normalizing each row of the cluster matrix C.

This can be achieved with the following code:

1 GrB_reduce(out_degree, NULL, NULL, GrB_PLUS_MONOID_INT64, A, NULL);
2 GrB_apply(w_temp, NULL, NULL, GrB_MINV_FP64, out_degree, NULL);
3 GrB_Matrix_diag(&W, w_temp, 0);
4 GrB_mxm(A, NULL, NULL, GrB_PLUS_TIMES_SEMIRING_FP64, W, A, NULL);

Figure 15: Assuring vertices have equal votes by normalizing weights via out-degrees.

Line 1 from Figure 15 uses the GrB_reduce method in order to sum up the rows of A

using the PLUS_MONOID and places the result in the vector out_degree. Line 2 then applies

the GrB_MINV unary operator to out_degree. That is, it divides each entry in the vector by 1.

Then, line 3 constructs an n × n matrix W with out_degree as the main diagonal. Then, line

21

4 calls GrB_mxm to multiply W and A using the standard PLUS_TIMES semiring, which effectively

normalizes each row by its sum. Figure 15 illustrates this process.

Figure 16: Illustration of the normalization process described in Figure 15.

1 GrB_Index iter, num_changed = 0;
2 while (true)
3 {
4 GrB_mxm(T, NULL, NULL, GxB_PLUS_SECOND_SEMIRING_FP64, C, A, NULL);
5 // m_index(j) = argmax(T(:j))
6 GrB_Index *m_index_values;
7 LAGraph_Malloc((void **)&m_index_values, n, sizeof(GrB_INT64), msg);
8 GrB_Vector_extractTuples_INT64(NULL, m_index_values, &n, m_index);
9 GrB_Matrix_new(&C_temp, GrB_BOOL, n, n)

10 GrB_extract(C_temp 13.4 , NULL, NULL, I 13.3 , GrB_ALL 13.1 , n,
m_index_values 13.2 , n, NULL);↪→

11

12 // If the percentage of vertices cluster assignments which have changed
since last iteration is below some predefined amount, terminate.↪→

13 GrB_eWiseMult(CD, NULL, NULL, GrB_ONEB_BOOL, C, C_temp, NULL);
14 GrB_reduce(&num_changed, NULL, GrB_PLUS_MONOID_INT64, CD, NULL);
15 num_changed = n - num_changed;
16 double percent_updated = num_changed * 1.0 / n;
17 // (Pseudocode) Check if percentage falls beneath threshold and if so, set

output and terminate.↪→

18

19 GrB_free (&C);
20 C = C_temp;
21 C_temp = NULL;
22 iter++;
23 }

Figure 17: Main logic of the SuiteSparse:GraphBLAS implementation of the PPC algorithm.

22

The main algorithm logic which encapsulates the voting process is straightforward using

SuiteSparse:GraphBLAS. The loop in Figure 17 runs until the percentage of vertices that have

changed cluster assignments between subsequent iterations is below some predefined small thresh-

old at which point the final clustering is achieved.

(a) Initial clustering and first iteration. (b) Second iteration.

(c) Third iteration. (d) Fourth iteration and final clustering.

Figure 18: Example of the PPC algorithm on the working example (Figure 8). Note, as computed
in Figure 14, each vertex has a self-edge (despite not being shown in the above

graphs).

Line 4 from Figure 17 is analogous to Equation 8 and represents the voting process. This

call specifies to multiply C (cluster matrix) by A (normalized adjacency matrix) using the the

PLUS_SECOND semiring and stores the result in T (the tally matrix). Note that NULL is passed to

the second (mask) and third (accumulator) parameters indicating they are both unused. In general,

passing NULL to a parameter of a GraphBLAS method indicates it is not used in the corresponding

23

computation.

At this point (after line 4 from Figure 17), the tally matrix holds all votes for the current

iteration. Consider our working example and Figure 18a. The third column in the resulting matrix

T indicates that vertex 3 has .25 votes to be in cluster 1, .50 votes to be in cluster 2, 1.0 vote to be

in cluster 3, .25 votes to be in cluster 4, and .25 votes to be in cluster 8. Of course, now we must

find which cluster of these cast the most votes for each vertex. That is, we need to find the argmax

over all columns of T.

SuiteSparse:GraphBLAS does not yet have a built-in argmax function. However, such an

operation is easily achievable through a thoughtful combination of GraphBLAS methods. The

following code describes the argmax functionality and is placed at line 5 of the code in Figure 17.

1 GrB_vxm(m, NULL, NULL, GrB_MAX_SECOND_SEMIRING_FP64, ones, T, NULL);
2 GrB_Matrix_diag(&D, m, 0);
3 GrB_mxm(E, NULL, NULL, GxB_ANY_EQ_FP64, T, D, NULL);
4 GrB_Matrix_select(E, NULL, NULL, GrB_VALUENE_BOOL, E, 0, NULL);
5 GrB_vxm(m_index, NULL, NULL, GxB_MIN_SECONDI_INT64, ones, E, NULL);

Figure 19: Argmax (over columns) code used in the PPC algorithm. [12]

Line 1 from Figure 19 finds the maximum number of votes among all clusters for each

vertex. This is accomplished via a call to GrB_vxm with the MAX_SECOND semiring which performs

a vector-matrix multiplication between ones and T where the binary operator SECOND is defined by

second(x, y) = y and the monoid MAX is defined by z = max(x, y). More formally, we have that

mj = max
1≤k≤n

{second(onesk, Tkj}

= max
1≤k≤n

{Tkj} (9)

for each index j of the vector m. For this operation, ones is a vector of length n of all 1’s, although

this particular value is actually arbitrary since the SECOND binary operator simply takes the value

present in T. Line 2 initializes the matrix D such that its diagonal is equal to m. Line 3 finds which

cluster(s) cast the maximum vote for a particular vertex. This is accomplished by a matrix-matrix

multiply between T and D using the ANY_EQ semiring. The EQ binary comparator is simply defined

24

as f(x, y) = 1 ⇐⇒ x = y and the ANY monoid is defined by z = fany(x, y) = x or y and

gives GraphBLAS the freedom to choose either x or y arbitrarily. In this case, the matrix D is

diagonal, so the power of the ANY monoid is not fully realized (as there will never be more than

one operation in a dot product and thus there will never be an opportunity to choose one value

arbitrarily). Line 4 employs the GrB_select function to select (keep) only values of E which are

not equal (GrB_VALUENE_BOOL) to 0, i.e., it drops explicit zeros. Finally, line 5 performs a vector-

matrix multiplication between ones and E using the GxB_MIN_SECONDI where the positional binary

operation SECONDI is defined by z = f(Aik, Bkj) = k for some matrices A and B and the MIN

monoid is defined by z = min(x, y). This line captures the minimum row index present in each

column, i.e., if two clusters cast the same number of votes for a vertex, then the vertex will be

subsumed by the cluster with the lowest index.

(a) Corresponds to line 1 in Figure 19. (c) Corresponds to line 5 in Figure 19.

(b) Corresponds to line 3 in Figure
19.

Figure 20: Example of the argmax functionality. The example above takes place between the first
and second iterations in the working example (between Figure 18a and Figure 18b).

25

After the argmax code has identified the cluster which cast the most votes for each ver-

tex, lines 6-10 of the code in Figure 17 assembles the new cluster matrix based on the val-

ues in m_index. That is, m_indexj = k implies that Ckj = 1. Lines 6-7 allocate the ar-

ray m_index_values to hold the (index, value) tuples extracted using the GraphBLAS method

GrB_Vector_extractTuples. Note, NULL is passed to the first parameter as we need not extract

the indices, only the values of m_index. Then, line 10 uses the GrB_extract function to extract

all rows 13.1 and the column indices specified in m_index_values 13.2 from the identity matrix I

13.3 , and places the result in C_temp 13.4 .

Figure 21: Example of submatrix extraction using GrB_extract. This follows from the working
example and is the next step after the argmax procedure laid out in Figure 19.

Finally, lines 13-16 of Figure 17 count the number of vertices which have changed clusters

between iterations. When this number falls below a certain threshold (line 17, passed by user), the

algorithm terminates. Line 13 uses the GrB_eWiseMult method with the GrB_ONEB_BOOL binary

operator, defined as f(x, y) = 1, in order to place a 1 in CD at the indices where C and C_temp

intersect (are both 1). After the call, (CD)ij = 1 if vertex j remained in cluster i between two

subsequent iterations. Then, line 14 uses GrB_reduce with the typical additive monoid to sum up

all entries in the matrix (that is, the total number of vertices which did not change clusters). Then,

the number of vertices that did change clusters is simply the total number of vertices n minus this

number. When the ratio of this number and n falls beneath the user-defined threshold thresh, the

26

clustering is deemed stable and the algorithm terminates.

2.3 Markov Cluster Implementation

The Markov Cluster Algorithm (MCL) was originally formulated in the language of linear

algebra, and therefore lends itself nicely to a GraphBLAS implementation. Furthermore, as the

original algorithm is based on matrix multiplication of adjacency matrices over the traditional plus-

times semiring, we need not devise our own formulation. In other words, MCL translates almost

directly into GraphBLAS. The following code shows the function header for this algorithm.

1 int LAGr_MarkovClustering(
2 // output:
3 GrB_Vector *c_f, // output cluster vector
4 // input
5 int e, // expansion coefficient
6 int i, // inflation coefficient
7 double pruning_threshold, // threshold for pruning values
8 double convergence_threshold, // MSE threshold for convergence
9 int max_iter, // maximum iterations

10 LAGraph_Graph G, // input graph
11 char *msg
12) ;

Figure 22: Function header for the Markov Cluster Algorithm LAGraph implementation.

Suppose G = (V,E) is our input graph with n vertices and suppose A ∈ Rn×n is its

adjacency matrix representation. As before, the first step is to add a self-edge to each vertex. This

can be done via the same code used in Figure 13. Then, the main algorithm logic can begin, which

is shown in Figure 23.

Lines 3-6 normalize the columns of the transfer matrix T_temp. This is nearly identical to

the code in Figure 15, which normalized the rows of a matrix. Notice, in this call to GrB_reduce,

the GrB_DESC_T0 descriptor 23.1 is used to first transpose the input matrix, effectively reducing

across the columns of T_temp.

Line 8 uses the GrB_select method to keep only the entries in T_temp whose values are

greater than pruning_threshold, which is a user-passed parameter. Unlike the PPC algorithm,

the matrix being acted on does not remain sparse throughout the algorithm since MCL squares

27

the transfer matrix in the expansion step. Therefore, while T starts as a sparse matrix, it quickly

becomes dense due to matrix squaring. Line 8 helps keep the transfer matrix as sparse as possible

by dropping negligible entries. Of course, this ultimately leads to a different and perhaps less

accurate clustering than with no pruning.

1 while (true)
2 {
3 GrB_reduce(w, NULL, NULL, GrB_PLUS_MONOID_FP32, T_temp, GrB_DESC_T0 23.1);
4 GrB_apply(w, NULL, NULL, GrB_MINV_FP32, w, NULL);
5 GrB_Matrix_diag(&D, w, 0);
6 GrB_mxm(T_temp, NULL, NULL, GrB_PLUS_TIMES_SEMIRING_FP32, T_temp, D,

NULL);↪→

7

8 GrB_select(T_temp, NULL, NULL, GrB_VALUEGT_FP32, T_temp,
pruning_threshold, NULL);↪→

9

10 // Compute MSE between subsequent iteration transfer matrices
11 GxB_Matrix_eWiseUnion(MSE, NULL, NULL, GrB_MINUS_FP32, T_temp, zero_FP32

23.2 , T, zero_FP32 23.3 , NULL);↪→

12 GrB_eWiseMult(MSE, NULL, NULL, GrB_TIMES_FP32, MSE, MSE, NULL);
13 GrB_reduce(&mse, NULL, GrB_PLUS_MONOID_FP32, MSE, NULL);
14 GrB_Matrix_nvals(&nvals, MSE);
15 mse /= nvals;
16

17 if (iter > max_iter || mse < convergence_threshold) break;
18

19 // Expansion step
20 for (int i = 0; i < e - 1; i++)
21 {
22 GrB_mxm(T_temp, NULL, NULL, GrB_PLUS_TIMES_SEMIRING_FP32, T_temp,

T_temp, NULL);↪→

23 }
24

25 // Inflation step
26 GrB_Matrix_apply_BinaryOp2nd_FP32(T_temp, NULL, NULL, GxB_POW_FP32,

T_temp, (double)i, NULL);↪→

27

28 iter++;
29 }

Figure 23: Main algorithm logic of Markov Cluster Algorithm LAGraph implementation.

Lines 11-15 compute the mean squared error (MSE) of two subsequent iterations of the

transfer matrix. Since MCL is not always guaranteed to converge, the MSE between iterations

gives an idea of how stable the transfer matrix is at a given point. Given two matrices, A,B ∈ Rn×n

28

where A has p ≤ n2 nonzero entries and B has q ≤ n2 nonzero entries, the MSE is defined as

MSE =
1

k

∑
i,j

(Aij −Bij)
2, (10)

where k = max{p, q}.1 Line 11 uses GxB_Matrix_eWiseUnion in order to calculate the element-

wise subtraction T_temp - T. Note that eWiseUnion is not the same method as eWiseAdd, which

we have used before. With this method, the additional parameters α 23.2 and β 23.3 are passed

which define the inputs to the binary operator (in this case MINUS_FP32) when entries are present

in one of T or T_temp but not the other. More formally, this specifies that [12]

for all entries (i, j) in T ∩ T_temp
MSE(i, j) = T(i, j) - T_temp(i, j)

for all entries (i, j) in T \ T_temp
MSE(i, j) = T(i, j) - β

for all entries (i, j) in T_temp \ T
MSE(i, j) = α - T_temp(i, j).

In this case, α and β are defined as zero_FP32 which is a user defined GrB_Scalar which simply

holds the value 0.0. Line 12 uses GrB_eWiseMult to perform element-wise multiplication of MSE

with itself, effectively squaring each entry. Then, line 13 uses GrB_reduce with the PLUS_MONOID

to sum up all entries in MSE which is subsequently divided by the total number of nonzero entries

(nvals) in MSE to obtain the MSE. Line 17 then checks if this MSE falls below the user-defined

threshold or if the algorithm has reached the maximum number of iterations and in both cases, the

loop terminates.

Lines 20-23 represent the expansion step, and simply uses GrB_mxm to multiply T_temp by

itself e - 1 times, effectively raising it to the eth power. Finally, line 26 represents the inflation step

and raises each entry in the transfer matrix to the ith power using the GrB_Matrix_apply_BinaryOp2nd

method. This method applies the POW_FP32 binary operator, defined by f(x, y) = xy, to each ele-

ment of the matrix T_temp where the input scalar i is taken as the second argument of the operator

(y) and the elements of T_temp are taken as the first argument (x).
1The use of k in this context is not standard in the calculation of MSE. For our purposes, it makes sense to consider

only the values which are nonzero, since we are dealing with sparse matrices.

29

Figure 24: Example of MCL on our working example.

Upon convergence, the steady-state version of the T may be interpreted as follows. Let

an attractor vertex be any vertex such that its corresponding row in T has at least one positive

value. Each attractor attracts the vertices within the row of the attractor which also have positive

values (including itself). Such vertices correspond to column indices of T. To compute the final

cluster vector, we can take the argmax over the columns of T and place them into a vector v with

the property vi = k if and only if vertex i is in cluster k. When two attractors attract the same

vertices with the same strength, the minimum index vertex is taken as the attractor. For example,

in the steady-state transfer matrix (bottom left) in Figure 24, the attractors are vertices 1 and 8

(vertices 8 and 9 attract the same vertices with the same strength, so min{8, 9} = 8 is taken as the

30

attractor) which attract vertices {2, 3, 4, 5, 6, 7}, {8, 9, 10}, respectively. Then, the final clustering

obtained is C = {{1, 2, 3, 4, 5, 6, 7}, {8, 9, 10}}. As shown previously, this computation can be

performed using SuiteSparse:GraphBLAS as shown in Figures 19 and 20. At this point, the final

cluster vector is returned and the algorithm is complete.

When the pruning threshold is high, some columns in the steady-state transfer matrix are

empty, i.e., they are not attracted to any other vertex. If the algorithm terminates and there are

fewer entries in T than there were to begin with, the vertices associated with those columns which

are missing a positive entry are assigned arbitrarily to the cluster associated with their index.

31

3. RESULTS

In this chapter, we survey the results obtained while testing our implementations. In do-

ing so, we will discuss both the algorithmic efficiency (which will showcase the power SuiteS-

parse:GraphBLAS API) of the programs as well as the quality of the clusterings which they pro-

duce.

3.1 Quality Metrics

As mentioned in Chapter 1, it is difficult to qualitatively say what makes a particular clus-

tering C of a graph G = (V,E) "good." This is largely due to the fact that the very definition

of a cluster/community is often heavily dependent on the type of network being analyzed. For

instance, the types of communities which emerge in a large-scale network of proteins will almost

certainly be vastly different than those which emerge in an Instagram social network. However,

many quality metrics (or functions) have been proposed to quantitatively define the quality of a

cluster.

3.1.1 Quality Metrics: Performance, Coverage, and Modularity

Despite the context-dependent nature of cluster quality, intuition alone suggests that any

good cluster should have more intra-cluster edges than inter-cluster edges. In other words, a good

clustering should have many edges connecting vertices within the same cluster and relatively few

edges connecting vertices in different clusters. In this section, we will discuss three basic quality

metrics which build on this very principle: coverage, performance, and modularity.

The coverage of a clustering C is the ratio of the number of intra-cluster edges and the

number of total edges and is formally defined as

Cov(C) = |Eintra|
|E|

. (11)

The performance1 of C is the ratio of the number of intra-cluster edges plus the number of

1Note, despite the name, "performance" has no relation to the algorithmic performance (i.e., runtime and efficiency)
of a graph clustering algorithm. Rather, it is a measure of the quality of the clustering itself.

32

inter-cluster non-edges and the number of total possible edges in G and is formally defined as [13]

Perf(C) = |Eintra|+ |Ninter|
n(n− 1)/2

. (12)

Note, if G is directed, the denominator is n(n− 1).

Among the most popular quality metrics is modularity, denoted as Q [14]. This metric

quantifies the strength of division of a graph into communities by comparing the actual density of

intra-cluster edges to the density one would expect to find if the edges of the graph were distributed

at random (while preserving node degrees) according to some null model. The function is defined

formally as

Q =
1

2 · |E|
∑
ij

(Aij − Pij) · δ(vi, vj). (13)

Here, A is the adjacency matrix, P represents the null model where Pij denotes the number of

expected edges between vi and vj , and the delta function is defined as δ(vi, vj) = 1 if vi and vj are

in the same cluster and 0 otherwise. For large-scale networks, the model used for P is called the

configuration model. This particular model often chosen as it preserves the degree distribution of

the original network while randomizing the actual connections between vertices. The configuration

model yields an expected number of Pij = kikj/2|E| edges between vi and vj [13]. Now, we may

replace Equation 13 with

Q =
1

2 · |E|
∑
ij

(
Aij −

kikj
2 · |E|

)
· δ(vi, vj) (14)

where ki and kj are the degrees of vi and vj , respectively. Finally, the only pairs of vertices that

contribute to the total modularity are those belonging to the same cluster, therefore these vertices

can be grouped together and Equation 14 may be rewritten as [14]

Q =
nc∑
c=1

[
Lc

|E|
− γ

(
dc

2 · |E|

)]
(15)

where nc denotes the total number of clusters, Lc denotes the number of intra-cluster edges in

cluster c, dc denotes the sum of the degrees of all vertices in cluster c, and γ denotes the resolution

parameter. The resolution parameter effectively scales the importance of the null model, but it is

33

common to simply use γ = 1. When G is directed, dc = d+c ·d−c . The range of Q is between −1 and

1. When Q is positive, this indicates that the number of intra-cluster edges in each community is

on average greater than what would be expected in a random edge distribution. Conversely, Q ≈ 0

indicates that there is little difference in the intra-cluster density distribution between the actual

graph and a random model.

3.1.2 Linear Algebraic Formulation

These quality metrics have straightforward computations and as such, there are some ex-

isting implementations. For instance, NetworkX’s partition_quality function calculates the

coverage and performance of a graph in O(C2 + L) time, where C is the number of communities

and L is the number of links [15]. However, a GraphBLAS implementation of these metrics will be

important in order to: (1) speed up computations as graphs get large, (2) provide a new approach

in addition the sequential methods which already exist, and (3) provide a framework for future

contributors to the LAGraph repository as additional graph clustering algorithms are added.

In what follows, let G = (V,E) be a directed graph with n vertices and C be a clustering

of G. Note that G need not be directed, and this is only assumed for the sake of explanation. In

the following sections, we will explain any modifications to computations which are caused by G

being undirected. Furthermore, let A ∈ Rn×n be the adjacency matrix for G and C ∈ Bn×n be

the sparse clustering matrix where Cij = 1 ⇐⇒ vj ∈ Ci. For the purposes of quality metrics,

self-edges are removed since it makes little sense to count a self-loop towards intra-cluster density,

therefore assume the diagonal entries of A are not present.

3.1.3 Coverage Metric Implementation

The linear algebraic formulation for calculating coverage and performance is straightfor-

ward and efficient. The matrix product CA has the property that the value present in entry (CA)ij

is equal to the number of incoming edges from vertices in Ci to vj . Next, the product CACT

has the property that the value present in entry (CACT)ij is equal to the number of edges between

cluster i and j. Therefore, the entries on the diagonal of this product (where i = j) give the number

34

of intra-cluster edges in cluster i = j. Then, the total number of intra-cluster edges in G is given

by tr(CACT) and then, rewriting Equation 3.1, we obtain

Cov(C) = tr(CACT)

|E|
. (16)

Note, when G is undirected, each edge is counted twice so Equation 16 is divided by 2.

Of course, this formulation is wonderfully and simply expressed using

SuiteSparse:GraphBLAS methods as shown in Figure 25.

1 GrB_Matrix_select(A, NULL, NULL, GrB_OFFDIAG, A, 0, NULL);
2 GrB_mxm(CA, NULL, NULL, GrB_PLUS_TIMES_SEMIRING_INT64, C, A, NULL);
3 GrB_mxm(CA, NULL, NULL, GrB_PLUS_TIMES_SEMIRING_INT64, CA, C 25.2 , GrB_DESC_T1

25.1);↪→

4 GxB_Vector_diag(trace, CA, 0, NULL);
5 GrB_Vector_reduce_INT64(&n_intraEdges, NULL, GrB_PLUS_MONOID_INT64, trace,

NULL);↪→

6 // If undirected, divide coverage by 2.
7 double coverage = (double)n_intraEdges / nedges;

Figure 25: Calculating coverage in SuiteSparse:GraphBLAS.

Line 1 calls the GrB_Matrix_select method with the GrB_IndexUnaryOp GrB_OFFDIAG

which selects only the entries in A off of the 0th diagonal (the main diagonal). This operation

is analogous to removing the self-edges in G. Lines 2-3 calculate CACT using the GrB_mxm

method with the traditional semiring. Notice, line 3 uses the GrB_DESC_T1 25.1 descriptor in

order to transpose the first (0-based) input C 25.2 . Line 4 uses GxB_Vector_diag to extract the

0th diagonal from CA (which now holds the product CACT) and stores it in the vector trace.

The call to GrB_Vector_reduce_INT64 in line 5 sums up all the elements of trace using the

standard monoid and stores the value in n_intraEdges. Now, coverage can be computed directly

by dividing the total number of intra-cluster edges (n_intraEdges) by the total number of edges

(nedges).

35

Figure 26: Calculating the coverage of the final clustering from Figure 18d.

3.1.4 Performance Metric Implementation

In order to compute performance, the number of inter-cluster non-edges (|Ninter|) must be

calculated. The most obvious solution would be to construct the matrix A′ to be the complement

of A, and then tr(CA′CT) would equal |Ninter|. However, given A is sparse, A′ is incredibly

dense, leading to a very expensive computation of CA′CT . This method is not practical for very

large graphs. Instead, we calculate |Ninter| directly using the values previously computed. Note

that |E| = |Eintra|+ |Einter| and Eintra ∩ Einter = ∅ which implies that |Einter| = |E| − |Eintra|.

Recall that there are n(n− 1) possible edges in G and by the same logic, for each cluster Ci ∈ C,

there are |Ci|(|Ci| − 1) possible intra-cluster edges. Taking the sum over all clusters, we obtain

K =
nc∑
i=1

(
|Ci|2 − |Ci|

)
=

nc∑
i=1

|Ci|2 −
nc∑
i=1

|Ci|

=

(
nc∑
i=1

|Ci|2
)

− n, (17)

36

the number of possible intra-cluster edges. Furthermore, we have that Einter ∩ Ninter = ∅ and

|Einter|+ |Ninter| = n(n− 1)−K. Therefore, we have

|Einter|+ |Einter| = n(n− 1)−K

⇐⇒ |Ninter| = n(n− 1)−K − |Einter|

= n(n− 1)−K − (|E| − |Eintra|). (18)

Note that when G is undirected, each edge is counted twice so there are n(n−1)/2 possible

edges and K/2 possible intra-cluster edges, and hence Equation 18 must be adjusted accordingly.

In order to compute this in SuiteSparse:GraphBLAS, we only need to compute K in addition to

our computations in Figure 25. The code in Figure 27 shows how to do so.

1 GrB_Matrix_reduce_INT64(k, NULL, NULL, GrB_PLUS_MONOID_INT64, C, NULL);
2 GrB_Vector_apply_BinaryOp2nd_INT64(k, NULL, NULL, GxB_POW_INT64, k, 2, NULL);
3 GrB_Vector_reduce_INT64(&sum_k2, NULL, GrB_PLUS_MONOID_INT64, k, NULL);
4 // Lines 1-5 from Figure 14
5 GrB_Index n_interEdges, n_interNonEdges;
6 n_interEdges = nedges - n_intraEdges;
7 n_interNonEdges = n * (n - 1) - (sum_k2 - n) - n_interEdges;
8 double performance = (double)(i_intraEdges + n_interNonEdges) / (n * (n - 1));

Figure 27: Calculating performance in SuiteSparse:GraphBLAS.

Again, if the graph is undirected, all edge counts must be divided by 2. Line 1 from Figure

27 uses the GrB_Matrix_reduce method in order to reduce (using the standard addition monoid)

across all rows of C and place the results in the vector k. Lines 3-4 are equivalent to the summation

in Equation 3.8. First, the method GrB_apply_BinaryOp2nd applies the GxB_POW binary operator

(defined as f(x, y) = xy) where a scalar, in this case 2, is bound to the second input of the operator

f effectively squaring each element in k. Line 3 then sums up all the values of k and places the

corresponding value in sum_k2, which is analogous to the variable K in Equation 17. Lines 5-8

directly apply the equation derived in Equation 18 to obtain the performance.

37

3.1.5 Modularity Metric Implementation

Finally, we can calculate modularity in SuiteSparse:GraphBLAS using similar methods.

Referring back to Equation 15, the components we must obtain in order to calculate modularity

are Lc and d+c , d
−
c . Notice that Lc was computed using the code in Figure 25 (line 5). In order

to compute the combined in and out degree of each cluster, we can follow a similar approach to

calculating the number of intra-cluster edges within each cluster. Figure 28 provides the code to

do so.

1 GrB_reduce(out_degree, NULL, NULL, GrB_PLUS_MONOID_INT64, A, NULL);
2 GrB_reduce(in_degree, NULL, NULL, GrB_PLUS_MONOID_INT64, A, GrB_DESC_T0);
3 GrB_mxv(k_out, NULL, NULL, GrB_PLUS_TIMES_SEMIRING_INT64, C, out_degree,

NULL);↪→

4 GrB_mxv(k_in, NULL, NULL, GrB_PLUS_TIMES_SEMIRING_INT64, C, in_degree, NULL);

Figure 28: Calculating the combined in/out-degrees of clusters in SuiteSparse:GraphBLAS.

Lines 1 and 2 use GrB_reduce with the PLUS_MONOID in order to calculate the out-degree

and in-degree for each vertex and places the results in out_degree and in_degree, respectively.

Then, lines 3 and 4 use a similar process as the one used to calculate the number of intra-cluster

within each cluster by multiplying the cluster matrix C by the in/out-degree vectors using GrB_mxv.

This gives new GrB_Vectors k_in and k_out which hold the combined out/in-degree for each

cluster, respectively.

Finally, in order to calculate modularity according to equation 15, we extract the values

from k_out, k_in, and l (the GrB_Vector which holds the number of intra-cluster edges for each

cluster) using GrB_Vector_extractTuples and place them in respective arrays. Then, modular-

ity can be calculated directly using a simple for loop, which is shown in Figure 29.

38

1 // Extract actual values of l, k_out, and k_in for modularity calculations
2 GrB_Index *lX, *k_outX, *k_inX;
3 // allocate memory for arrays on heap using LAGraph_Malloc
4 GRB_TRY(GrB_Vector_extractTuples_INT64(NULL, lX, &nclusters, l));
5 GRB_TRY(GrB_Vector_extractTuples_INT64(NULL, k_outX, &nclusters, k_out));
6 GRB_TRY(GrB_Vector_extractTuples_INT64(NULL, k_inX, &nclusters, k_in));
7

8 GrB_Index m, out_degree_sum;
9 GRB_TRY(GrB_reduce(&out_degree_sum, NULL, GrB_PLUS_MONOID_INT64, out_degree,

NULL));↪→

10

11 m = out_degree_sum;
12 double norm = 1.0 / (m * m);
13

14 // Compute modularity
15 double mod = 0.0;
16 for (int c = 0; c < nclusters; c++)
17 {
18 mod += (1.0 * lX[c] / nedges) - (gamma * ((k_outX[c] * k_inX[c]) * norm));
19 }

Figure 29: Calculating modularity in SuiteSparse:GraphBLAS.

3.2 Benchmarking Results

The following results were benchmarked on Texas A&M’s BACKSLASH system, featuring

an Intel Xeon E5-2695 v2 CPU with 24 cores at 2.40GHz, capable of turbo speeds up to 3.20GHz,

and 60 MiB of L3 cache, designed for high-performance computing tasks. The sparse matrices

used for benchmarking are all chosen from the SuiteSparse Sparse Matrix Collection [16].

Table 1 outlines the results of running our implemented algorithms on the com-Youtube,

com-LiveJournal, and com-DBLP graphs, which represent different kinds of social networks. Ad-

ditionally, our implementations were tested against the Community Detection using Label Propa-

gation (CDLP) clustering algorithm, which is a part of the LAGraph repository. Table 2 outlines

the results of running the algorithms on directed graphs. Table 4 summarizes the performance of

our cluster quality metric implementations ran on clusterings of graphs of various sizes. The rows

labelled n, nvals, and nclusters describe the size of the graphs and clusterings. In particular, n is

the number of vertices, nvals is the number of edges, and nclusters is the number of clusters.

39

Table 1: Benchmarking results for undirected graphs.

com-Youtube com-LiveJournal com-DBLP
n 1,134,890 3,997,962 317,080

nvals 2,987,624 34,681,189 1,049,866
PPC3 PPC4 MCL CDLP PPC3 PPC4 MCL CDLP PPC3 PPC4 MCL CDLP

Time (s) 6.084 2.324 18.16 22.47 39.48 50.15 54.28 79.04 2.653 0.7592 1.596 6.006
Cov 0.7838 0.1046 0.3241 0.6941 0.7844 0.1649 0.1761 0.9562 0.6251 0.3622 0.5952 0.6438
Perf 0.9134 0.9999 0.9997 0.8203 0.9084 0.9999 0.9999 0.4022 0.9996 0.9999 0.9999 0.9970
Mod 0.6294 0.1045 0.3238 0.4857 0.6688 0.1648 0.1761 0.4677 0.6240 0.3620 0.5951 0.6393

Avg. Size 26.74 1.355 4.893 19.69 34.87 2.119 3.922 111.4 8.963 2.151 8.328 14.02

Table 2: Benchmarking results for directed graphs.

wiki-Topcats email-Eu-core
n 1,791,489 1,005

nvals 28,511,807 25,571
PPC1 PPC2 PPC3 PPC4 MCL CDLP PPC1 PPC2 PPC3 PPC4 MCL CDLP

Time (s) 15.204 15.90 14.73 29.29 20.93 37.37 0.0102 0.0153 0.0118 0.0182 0.0185 0.0648
Cov 0.7908 0.0779 0.9378 0.2744 0.1639 0.9387 0.9971 0.2899 0.9609 0.3235 0.2545 1.000
Perf 0.6454 0.9999 0.3195 0.9934 0.9985 0.3008 0.1419 0.9722 0.2636 0.9666 0.9524 0.0621
Mod 0.2212 0.0775 0.1260 0.1652 0.1630 0.1357 0.0000 0.2422 0.0792 0.2698 0.2126 0.0000

Avg. Size 37.44 1.795 569.4 2.223 10.20 755.9 23.92 2.512 43.69 3.073 4.975 50.25

Table 3: Description of column labels for Tables 1 and 2.

Keep Edge Weights
as Is

Normalize Edge Weights
via Out-Degree

Keep Directed PPC1 PPC2
Make Undirected PPC3 PPC4

Table 1 compares the algorithms when run on undirected graphs, i.e., graphs with a symmet-

ric adjacency matrix. PPC was run with the parameters thresh = 0.0001 and max_iter = 50

while MCL was run with the parameters e = i = 2, pruning_threshold = 0.00025,

convergence_threshold = 1.0e-8, and max_iter = 50. The columns PPC3 and PPC4 differ

in that PPC3 runs our implementation of the Peer Pressure algorithm with normalizing weights

via out-degrees of vertices (as shown in the working example) while PPC4 does not perform this

normalization. In general, our results show that when running PPC on an undirected graph, not

normalizing edge weights via out-degree yields coarser partitions and therefore more reasonable

clusterings. However, depending on the application, it may be more favorable to find finer clus-

40

terings in which case normalizing the weights may be beneficial. Our MCL implementation gives

reasonable clusterings when compared to CDLP and PPC when run with its current configuration.

Not shown in Table 1 is that MCL scales poorly as graphs get even larger due to the matrix squaring

which is involved, which yields dense matrices not suitable for GraphBLAS.

Table 2 compares the algorithms when run on directed graphs. Both algorithms were run

with the same parameters as described in the preceding paragraph. As summarized in Table 3,

PPC1 considers the directed structure and does not normalize vertex weights via out-degree, PPC2

considers the directed structure and does normalize vertex weights via out-degree, PPC3 considers

the underlying undirected structure and does not normalize vertex weights via out-degree, and

PPC4 considers the underlying undirected structure and normalizes vertex weights via out-degree.

The results indicate that most configurations give reasonable clusterings efficiently, however it is

evident that particular configurations/algorithms have varying results depending on the input graph.

And again, the best configuration to use will largely be dependent on the context of the graph

clustering problem. For instance, it is interesting to note that the PPC3 configuration and CDLP

give similar clustering results, however PPC3 runs in under half the time. Moreover, while MCL

gives smaller clusters when run on directed graphs, this may be useful for particular problems.

Table 4: Quality metric runtime comparison between our implementations using
SuiteSparse:GraphBLAS (GB) and NetworkX’s implementations using Python (NX).

The Speedup is the ratio of NetworkX’s runtime and our runtime.

email-Enron com-Amazon com-Youtube com-LiveJournal
n 36,692 334,863 1,134,890 3,997,962

nvals 183,831 925,872 2,987,624 34,681,189
nclusters 2,178 38,662 42,438 114,636

GB NX Speedup GB NX Speedup GB NX Speedup GB NX Speedup
Partition Quality (s) 0.1167 0.4044 3.465 0.1167 91.46 783.7 0.4414 116.3 263.4 2.707 834.1 308.1

Modularity (s) 0.1119 0.1838 1.642 0.1119 1.941 17.34 0.4901 6.417 13.09 3.602 73.10 20.29

Table 4 compares our partition quality function (which computes both performance and

coverage of a clustering) with NetworkX’s Python implementation. As expected, our SuiteSparse

implementation realizes significant speedup when compared to a sequential implementation. Of

course, comparing an algorithm which is written in C to a Python counterpart is not necessar-

41

ily a "fair fight." Nevertheless, our implementations using SuiteSparse:GraphBLAS prove to be

extremely efficient and scalable and provide an alternative to NetworkX’s function.

42

4. CONCLUSION

We conclude that graph clustering algorithms are generally well-suited to a SuiteSparse:-

GraphBLAS implementation. Moreover, one can expect such an implementation to yield meaning-

ful clusterings in a reasonable amount of time. Most importantly, our implementations use simple,

user-level code which can be referenced by subsequent authors in creating graph clustering algo-

rithms in the language of linear algebra.

In particular, our SuiteSparse:GraphBLAS implementation of the Peer Pressure clustering

algorithm saw 3-4 times speedup when compared to the existing LAGraph CDLP algorithm, with

comparable cluster quality. We have shown that different parameter tunings for the PPC algorithm

can have an affect on the granularity of the clustering produced, which may be useful in certain ap-

plications. Our MCL implementation also realized approximately 2 times speedup when compared

to CDLP algorithm, however we note that this algorithm is less suitable for a linear algebraic for-

mulation as matrix squaring compromises the sparsity of subsequent transfer matrices. Finally, we

effectively implemented some quality metrics which consistently outperform NetworkX’s equiva-

lent metrics by a factor greater than 10.

There is still much research to be conducted on the topic of graph clustering in SuiteS-

parse:GraphBLAS. For instance, there are lots of graph clustering algorithms such as Louvain

community detection and spectral clustering which are perhaps suitable for a GraphBLAS imple-

mentation. Furthermore, we hope more work can be done in optimizing our implementations of

PPC and MCL. In particular, allowing for more continuous control of granularity for PPC would

be helpful in identifying a wider range of clusterings. Finally, there exist many other cluster quality

metrics which could possibly be computed using GraphBLAS.

43

REFERENCES

[1] R. Diestel, Graph Theory: 5th edition. Springer Graduate Texts in Mathematics, Springer-
Verlag, © Reinhard Diestel, 2017.

[2] J. Berstel and D. Perrin, Theory of Codes. ISSN, Elsevier Science, 1985.

[3] S. E. Schaeffer, “Graph clustering,” Computer Science Review, vol. 1, no. 1, pp. 27–64, 2007.

[4] V. B. Shah, An Interactive System for Combinatorial Scientific Computing with an Emphasis
on Programmer Productivity. PhD thesis, UNIVERSITY OF CALIFORNIA Santa Barbara,
2007.

[5] S. Dongen, “Graph clustering by flow simulation,” PhD thesis, Center for Math and Com-
puter Science (CWI), 05 2000.

[6] B. Brock, A. Buluç, R. Kimmerer, J. Kitchen, M. Kumar, T. Mattson, S. McMillan, J. Mor-
eira, M. Pelletier, and E. Welch, “The graphblas c api specification: Version 2.1.0.” https:
//graphblas.org/docs/GraphBLAS-2.1.0.pdf, 2023. Retrieved 22 December 2023.

[7] T. A. Davis, “Algorithm 1000: Suitesparse:graphblas: Graph algorithms in the language of
sparse linear algebra,” ACM Trans. Math. Softw., vol. 45, dec 2019.

[8] T. Mattson, T. A. Davis, M. Kumar, A. Buluc, S. McMillan, J. Moreira, and C. Yang, “La-
graph: A community effort to collect graph algorithms built on top of the graphblas,” in 2019
IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pp. 276–284, 2019.

[9] G. Szárnyas, D. A. Bader, T. A. Davis, J. Kitchen, T. G. Mattson, S. McMillan, and E. Welch,
“Lagraph: Linear algebra, network analysis libraries, and the study of graph algorithms,”
2021.

[10] E. Robinson, 6. Complex Graph Algorithms, pp. 59–84.

[11] J. Kepner and J. Gilbert, Graph Algorithms in the Language of Linear Algebra. Society for
Industrial and Applied Mathematics, 2011.

44

https://graphblas.org/docs/GraphBLAS-2.1.0.pdf
https://graphblas.org/docs/GraphBLAS-2.1.0.pdf

[12] T. A. Davis, SuiteSparse:GraphBLAS User Guide. Texas A&M University, Texas, Jan. 2024.
Version 9.0.1, pp. 287.

[13] S. Fortunato, “Community detection in graphs,” Physics Reports, vol. 486, no. 3, pp. 75–174,
2010.

[14] M. E. J. Newman and M. Girvan, “Finding and evaluating community structure in networks,”
Phys. Rev. E, vol. 69, p. 026113, Feb 2004.

[15] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure, dynamics, and
function using networkx,” in Proceedings of the 7th Python in Science Conference (G. Varo-
quaux, T. Vaught, and J. Millman, eds.), (Pasadena, CA USA), pp. 11 – 15, 2008.

[16] T. A. Davis and Y. Hu, “The university of florida sparse matrix collection,” ACM Trans. Math.
Softw., vol. 38, dec 2011.

45

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	NOMENCLATURE
	INTRODUCTION
	Mathematical Background
	Graph Clustering
	GraphBLAS and LAGraph Overview

	METHODS
	Basics of SuiteSparse:GraphBLAS
	Peer Pressure Implementation
	Markov Cluster Implementation

	RESULTS
	Quality Metrics
	Benchmarking Results

	CONCLUSION
	REFERENCES

