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Abstract—A major challenge in the deployment of scientific
software solutions is the adaptation of research prototypes to
production-grade code. While high-level languages like MATLAB
are useful for rapid prototyping, they lack the resource efficiency
required for scalable production applications, necessitating trans-
lation into lower level languages like C++. Further, for machine
learning and signal processing applications, the underlying linear
algebra primitives, generally provided by the standard BLAS and
LAPACK libraries, are unwieldy and difficult to use, requiring
manual memory management and other tedium. To address this
challenge, the Armadillo C++ linear algebra library provides an
intuitive interface for writing linear algebra expressions that are
easily compiled into efficient production-grade implementations.
We describe the expression optimisations we have implemented
in Armadillo, exploiting template metaprogramming. We demon-
strate that these optimisations result in considerable efficiency
gains on a variety of benchmark linear algebra expressions.

Index Terms—numerical linear algebra, BLAS, LAPACK,
automated mapping, metaprogramming, expression optimisation.

I. INTRODUCTION

Deployment and productisation of various machine learning
and signal processing algorithms often requires conversion of
research code written in a high-level language (eg., Matlab [1])
into a lower level language such as C or C++, which is
considerably more resource efficient [2]. Resource efficiency is
an important concern: in datacenter environments, the efficiency
of production code is directly connected to cost (power costs
and/or cloud resource costs). In environments with constrained
computational resources, such as robots, unmanned aerial
vehicles and spacecraft, efficiency is especially important as
prototype code may be entirely unable to run on the target device
due to limited memory or computational power.

Many algorithms inherently rely on numerical linear algebra
operations, which are typically provided by the well-tested
industry standard BLAS and LAPACK toolkits [3], [4], and
their high-performance drop-in substitutes like OpenBLAS [5].
However, converting arbitrary linear algebra expressions into an
efficient sequence of well-matched calls to BLAS and LAPACK
routines is non-trivial [6], [7]; manual conversion can be labo-
rious and error-prone, and requires good understanding of the
intricacies of BLAS and LAPACK, including various trade-offs
across available routines and storage formats.

A further downside of directly using BLAS/LAPACK routines
is that the resultant source code is quite verbose, has little
similarity to the original mathematical expressions, involves
keeping track of many supporting variables, and requires manual

memory management. Such aspects significantly reduce the
readability of the source code, raise the risk of bugs, and increase
the maintenance burden [8], [9].

To address the above issues in a coherent framework, we have
implemented the Armadillo linear algebra library for C++ [10],
which automatically optimises mathematical expressions (both
at compile-time and run-time) and efficiently maps them to
BLAS/LAPACK routines, all while providing a user-friendly
Matlab-like programming interface directly in C++. Armadillo
essentially acts as a high-level domain specific language [11]
built on top of the host C++ language, allowing for resource
efficient numerical linear algebra without the many pain points
of low-level code. This enables rapid and low risk conversion of
research code into production environments, and even permits
direct prototyping of algorithms within C++.

As an expository demonstration of the reduced maintenance
burden when using Armadillo, consider the matrix expression
¢ = A~ 'b for matrix A and vectors b and ¢, which represents the
solution to a system of linear equations [12]. Using Armadillo,
it can be implemented directly in C++ as a single readable and
maintainable line of code: vec ¢ = inv(A) * b. Naively mapped,
the above code will result in subsequent calls to three LAPACK
and BLAS functions: xGETRF, xGETRI, and xGEMV. Each of those
three functions has between 6 and 11 parameters and may
require manual allocation of workspace memory. In addition to
hiding the verbosity and associated burdens with calls to BLAS
and LAPACK functions, Armadillo is also able to reinterpret
the expression and perform a better mapping to more efficient
BLAS/LAPACK functions, avoiding the explicit matrix inverse.

Armadillo employs two strategies for automatically optimis-
ing mathematical expressions, both aiming to reduce compu-
tational effort: (i) compile-time fusion of operations to reduce
the need for temporary objects, (ii) mixture of compile-time
detection of expressions and run-time analysis of matrix prop-
erties, with the aim of re-ordering and translating operations.
Both strategies extensively use C++ template metaprogramming
concepts [13], [14], where the compiler is induced to reason at
compile-time to generate code tailored for each expression.

We continue the paper as follows. Section II overviews the
techniques for compile-time and run-time expression optimisa-
tion. Section III provides an empirical evaluation demonstrating
the speedups obtained from the optimisations. Section IV
overviews the functionality provided by Armadillo. The salient
points and avenues for further exploitation are summarised in
Section V.
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II. ExPRESSION OPTIMISATION VIA METAPROGRAMMING

Template metaprogramming induces the C++ compiler to run
special programs written in a subset of the C++ language. Such
metaprograms are executed entirely at compile-time, and can be
used to produce compiled code that is specialised for arbitrary
object and element types [14].

Rather than directly and immediately evaluating each compo-
nent of a mathematical expression, Armadillo exploits template
metaprogramming via lightweight marker objects that hold ref-
erences to matrices and data associated with specific operations.
The marker objects are generated via user-accessible functions
(such as addition and multiplication) and store the identifier
of each operation as a custom fype only visible to the C++
compiler, rather than an explicit value. The marker objects can
be chained together, leading to the full description of an arbitrary
mathematical expression to be visible to the C++ compiler as
an elaborate type, comprised as a tree of operation types. The
evaluation of the entire expression is automatically performed
when it is assigned to a target matrix. This approach is known
as delayed evaluation (also known as lazy evaluation), and
is in contrast to the traditional eager evaluation and greedy
evaluation approaches [15].

As an illustrative example, let us consider the expression

Z=0.4*xX + 0.6%Y

where X, Y and Z are pre-defined Mat objects, each holding a
100x100 matrix. In a traditional eager evaluation approach, the
0.4 % X operation would be evaluated first, storing the intermedi-
ate result in a temporary matrix T1. The 0.6 * Y operation would
then result in a secondary temporary matrix T2. The temporary
matrices T1 and T2 would then be added, finally storing the
result in matrix Z. This approach for the evaluation of the entire
expression is suboptimal and inefficient, as it requires time-
consuming memory allocation for the two temporary matrices
and three separate loops over the associated matrix elements.
The delayed evaluation approach implemented in Armadillo
aims to address such inefficiencies. Through overloading
the * operator function, the operation ©.4 * X is not evaluated
directly, but is instead automatically converted to a lightweight
templated marker object named Op<Mat, op_mul>, which holds
areference to the X object and a copy of the . 4 scalar multiplier.
The nomenclature Op<. . .> indicates that Op is a C++ template
class, with the items (types) between ‘<’ and >’ specifying
template parameters. A similar Op marker object is automatically
constructed for the 0.6 x Y operation. The + operator function is
overloaded to accept Mat objects and arbitrary marker objects,
generating a templated Glue marker object that holds references
to the given objects. In this example, it chains the two generated
Op objects, resulting in the Glue object having the following type:

Glue< Op<Mat, op_ mul>, Op<Mat, op_ mul>, glue plus >

The expression evaluation mechanism in Armadillo is then
automatically invoked through the = operator defined in the Mat
object. The mechanism interprets (at compile-time) the nested
types in the template parameters of the given Glue object and
automatically generates compiled instructions equivalent to:

for(int i=0; i<N; ++i) { Z[i] = 0.4%X[i] + 0.6*Y[il; }

where N is the number of elements in matrices X, Y and Z,
with X[i] indicating the i-th element in matrix X. Apart
from the lightweight Op and Glue marker objects (which are
automatically generated and pre-allocated at compile-time), no
other temporary objects are generated. Furthermore, only one
loop over the elements is required, instead of three separate
loops in the traditional eager evaluation approach.

As a further efficiency enhancement, modern C++ compilers
exploit aggressive optimisation strategies that are able to remove
lightweight scaffolding objects. This results in the compiler pro-
ducing machine code where the temporary Op and Glue objects
are optimised away, leaving only code absolutely necessary for
the specialised loop, tailored for the given expression. Moreover,
this loop can be automatically vectorised by the C++ com-
piler, where low-level Single-Instruction-Multiple-Data (SIMD)
instructions are exploited to achieve higher throughput [16].

The expression evaluation mechanisms in Armadillo include
safety checks, to ensure that only compatible sizes can be
used for each given operation. For example, checking that two
matrices to be added or multiplied have conforming dimensions.

For mathematical expressions involving element-wise opera-
tions that can be chained, the evaluation mechanism is able to
handle an arbitrary number of components (eg., matrices) within
the given expressions. Other expressions are handled through
detecting specific template patterns, possibly embedded within
longer expressions. For example, the expression inv(A) xb is
translated to the following Glue template type:

Glue< Op<Mat, op_inv>, Vec, glue times >

The above pattern is detected at compile-time, and is automati-
cally translated as a call to the xGESV function in LAPACK, which
solves a system of linear equations without the matrix inverse.

In general, expressions with matrix multiplication are typi-
cally translated as calls to the xGEMM and xGEMV functions in BLAS,
which are in turn multi-threaded and hand optimised for specific
CPU architectures in high-performance implementations such as
OpenBLAS [5].

Expression patterns are not necessarily blindly mapped
to loops or BLAS/LAPACK functions. Specific patterns are
further analysed at run-time, by analysing the properties of the
constituent matrices. For example, run-time analysis is used for
detecting that in the expression A-AT, the matrix multiplication
involves the same matrix and results in a symmetric matrix.
Rather than mapping the expression to the xGEMM function by
default, the more efficient xSYRK function can be used, which
exploits the symmetry property.

Analysis of matrix properties is also exploited in the
evaluation of matrix multiplication chains. For example, in
the expression A-B-C-D, each of the possible matrix pairs
is examined. The pair which results in the smallest matrix
is multiplied first, thereby reducing computational effort in
subsequent matrix multiplications. As such, it is possible for the
entire expression to be evaluated right-to-left (while respecting
general non-commutativity of matrix multiplication), rather than
the traditional left-to-right order.



III. EmpiricAL EVALUATION

To demonstrate some of the optimisations automatically
attainable by the expression processing frameworks imple-
mented in Armadillo, we evaluate the following representative
set of expressions.

(1). € = 0.4-A +0.6-B; this is an instance of a compound
expression involving element-wise addition of matrices and
element-wise multiplication of matrices by scalars. A naive
implementation evaluates each component separately, gener-
ating temporary matrices for 0.4-A and 0.6-B, followed by
adding the temporary matrices. An optimised implementation
is able to bypass the generation of the temporaries, combining
scalar multiplication and element addition into one loop that
can exploit high-performance SIMD instructions present in
modern CPUs [16]. SIMD instructions such as AVX-512 allow
efficient processing of chunks of data in one hit instead of
individual elements [17].

2). C = A( 1 + BT, . ), this expression involves element-wise
addition of submatrlces (accessing individual columns and
rows) in conjunction with matrix transpose. The notation A (. 1)
denotes the first column of A, while B 5 .) denotes the second
row of B. A naive implementation explicitly extracts the
column and row into temporary vectors, followed by applying
a transpose operation that generates a further temporary vector,
which is then used for element-wise addition. An optimised
implementation bypasses the generation of all temporary
vectors as well as the explicit transpose operation, and instead
accesses the matrix elements directly, performing an implicit
transpose where required.

(3). C = diagmat(A)-B; this expression demonstrates matrix
multiplication where one of the matrices is converted to a
diagonal matrix. The diagmat(A) function indicates that all
elements not on the main diagonal of A are assumed to be
zero. In a naive implementation, the diagmat(A) function
extracts the diagonal from A, and places it a temporary matrix.
The temporary matrix (which is assumed by default to be
dense) is then multiplied with B through a call to the standard
XGEMM function in BLAS. An optimised implementation omits
generating the temporary, and instead performs a specialised
matrix multiplication which exploits sparsity by assuming that
only the diagonal elements of A are non-zero.

(4). C = diagmat(A-B); in this expression the result of matrix
multiplication is converted into a diagonal matrix. A naive
implementation would blindly evaluate A-B via the xGEMM
function in BLAS and store the result in a temporary matrix,
followed by extracting the diagonal from the temporary and
placing it in the final result matrix. An optimised implemen-
tation is able to determine that only the diagonal elements
of the matrix multiplication are required, thereby omitting
unnecessary computations and temporaries.

(5). k = trace(A-B); this expression is similar to the preceding

diagmat(A-B) expression, with the main difference that the

diagonal elements of A:-B are summed into the scalar k. In a

naive implementation full matrix multiplication is performed,

while an optimised implementation performs a partial matrix
multiplication to obtain only the diagonal elements.

E = A, - m><'" Cm m -D%X%. this is an instance

of chained matrix multlpllcatlon resulting in a matrix. Here

the matrices are progressively decreasing in size. A naive
implementation would evaluate each of the matrix products
in the standard left-to-right manner, disregarding the wider

(6).

context of the expression. An optimised implementation can
examine the sizes of all possible matrix products within the
expression, and determine that evaluating the products in a
reversed order will save computational effort.
k = a” - diagmat(B) - ¢; this is an example of chained matrix
multiplication that results in a scalar value, where a and ¢ are
column vectors. A naive implementation computes each com-
ponent separately (matrix transpose and generation of diagonal
matrix) resulting in temporary matrices, and then performs
matrix multiplication involving the temporaries. An optimised
implementation can examine the expression and determine that
only a single and straightforward element-wise multiply-and-
sum loop is required over the underlying components, avoiding
unnecessary computations and generation of temporaries. This
type of expression optimisation is invoked in Armadillo via the
as_scalar() function.

(8). B = A - AT this expression is seemingly straightforward,
involving a matrix being multiplied with its transposed version,
resulting in a symmetric matrix. A naive implementation
disregards this fact and blindly calculates the matrix product
by treating the two components as separate matrices after
an explicit transpose operation. A semi-optimised imple-
mentation can avoid the explicit transpose by appropriate
mapping to the xGEMM function in BLAS. However, a fully
optimised implementation can detect that the two matrices to
be multiplied are the same, and map the expression to the
more efficient xDSYRK function in BLAS, which exploits the
symmetry aspect and avoids unnecessary computations.

C = A™' . b; this expression indicates that a solution to a
system of linear equations is implicitly sought. A naive imple-
mentation ignores the intent of the expression and calculates
the inverse of matrix A followed by a matrix multiplication.
Calculating the inverse is not only computationally inefficient,
but also potentially numerically unstable. An optimised imple-
mentation can detect the intent of the expression and map it to
the more appropriate xGESV function in LAPACK, which finds
the solution through a more numerically stable algorithm [3].

C = solve(A,b) where A is a tri-diagonal band matrix;
this expression indicates that a solution to a system of
linear equations is explicitly sought, with A having a special
sparse structure. A naive implementation would disregard
the structure. An optimised implementation can analyse the
matrix and choose a more tailored solver function in LAPACK,
thereby exploiting the sparse structure to avoid superfluous
computations.

).

).

(10).

For each of the above expressions, the following multiple matrix
sizes are used, ranging from small to large: { 100x 100, 250250,
500%500, 1000x 1000 }. The evaluation is done on a machine with
an AMD Ryzen 7640U x86-64 CPU running at 3.5 GHz. All source
code was compiled with the GCC 14.2 C++ compiler. We also
used the open-source OpenBLAS 0.3.26 library which provides
optimised implementations of BLAS and LAPACK routines [5].

The results shown in Fig. 1 demonstrate that the optimised
handling of expressions in Armadillo leads to considerable
reduction in computational effort. Across the considered
expressions, the reduction in wall-clock time is often over 50%,
and in several cases it is over 90%.

Fig. 2 shows a simple Armadillo-based C++ program to
demonstrate its intuitive programming syntax. Fig. 3 lists a
trace of corresponding internal function calls, hiding from the
user the complexity of calling BLAS and LAPACK functions.



(1) expression: C =0.4-A +0.6-B

matrix size naive optimised  reduction
100x100 551x107% 226x107%  59.04%
250x250  4.04x107° 1.66x 1070  58.89%
500x500  1.87x 1074 6.95x1075  62.87%

1000x1000 2.45x 1073 7.85x10™%  67.90%

S T
(2) expression: C = A(:’l) + B(z,;)

matrix size naive optimised  reduction
100x100 9.52x 1078 338x10°%  64.50%
250250  2.94x 1077 1.05x1077  64.43%
500500  7.01x 1077 337x1077  51.94%

1000x1000  1.30x 107  7.38x 1077  43.07%

(3) expression: C = diagmat(A) - B

matrix size naive optimised  reduction
100x100  3.84x 1075 2.80x 1070  92.70%
250x250 6.49x 107 2.81x107°  95.67%
500500  5.01x 1073 2.01x107%  95.99%

1000x1000  4.14x 1072 1.49%x 1073  96.40%

(4) expression: C = diagmat(A - B)

matrix size naive optimised  reduction
100x100  3.88x 107> 4.86x107°  87.47%
250x250  6.51x107%  3.99%x 1073  93.87%
500500  5.02x 1073 1.75%x 107 96.51%
10001000  4.11x1072 1.93x1073  95.31%

(5) expression: k = trace(A - B)

matrix size naive optimised reduction
100100  3.73x 1070  5.98x 10~ 99.999%
250x250  6.42x107%  6.62x 10711 99.999
500500  4.93x1073  6.71x10711  99.999

1000x1000  4.03x 1072 271 x 10710 99.99%

(6) expression: E = A,;xm - Bmx% ~C%X% ~D%X%

matrix size naive optimised  reduction
100x100 1.20x107° 6.17x107%  48.53%
250%x250  2.05x107%  1.02x107™*  50.20%
500500  1.54x 1073  7.94x 1074  48.34%

10001000 1.21x1072 6.02x 1073  50.17%

(7) expression: k = al - diagmat(B) - ¢

matrix size naive optimised reduction
100100  1.85x107® 7.21x10°10  99.96%
250x250  1.14x107° 8.54x 10719  99.999
500500 4.77x 1075  7.21x10710  99.999
10001000  1.99x 10™%  7.24x 10710 99.999
(8) expression: B = A - AT
matrix size naive optimised  reduction
100x100  3.97x 1070 335x107°  15.59%
250x250  6.65x 1074 3.78x107%  43.19%
500x500 5.07x1073 267x1073  47.41%
10001000 4.32x 1072 221x1072  48.89%
(9) expression: C = A l.p
matrix size naive optimised  reduction
100x100 1.47x107% 545x107°  62.92%
250250  1.46x 1073 4.69x107*  67.91%
500x500  8.23x 1073 2.79x1073  66.16%
1000x1000  5.33x 1072 1.90x 1072  64.34%

(10) expression: C = solve(A, b) where A is a tri-diagonal

matrix size naive optimised  reduction
100x100  8.11x 1070 2.16x107°  73.40%
250250  6.19x107% 7.40x 107  88.04%
500500  3.31x 1073 2.06x107%  93.77%

1000x1000  2.13x 1072 1.30x 1073  93.91%

Fig. 1: Comparison of time taken (in seconds) for various matrix expressions, using naive (non-optimised) and automatically optimised
implementations within the Armadillo linear algebra library. Average wall-clock time across 1000 runs is reported. Evaluations were performed
on an AMD Ryzen 7640U CPU, running at 3.5 GHz. Code was compiled with the GCC 14.2 C++ compiler with the following flags:
-03 -march=native. OpenBLAS 0.3.26 was used for optimised implementations of BLAS and LAPACK routines [5].

01: #include <armadillo>

02:

@3: using namespace arma;
04:

05: int main()

06: {

07: // generate random 100x100 matrix
08: mat A(100, 100, fill::randu);

09:

10: // generate random 100x1 vector
11: vec b(100, fill::randu);

12:

13: // solve for x in random symmetric system AA'x = b
14: vec x = solve( A * A.t(), b );
15:

16: x.print("x:");

17:

18: return 0;

19: }

Fig. 2: A simple Armadillo-based C++ program, solving a random
symmetric system of linear equations.

Op<T1, op_type>::0p(T1&) [T1 = Mat; op_type = op_htrans]

operator*(T1&, T2&) [T1 = Mat; T2 = Op<Mat,op_htrans>]

Glue<T1, T2, glue_type>::Glue(T1&, T2&) [T1 = Mat; T2 = Op<Mat,op_htrans>; glue_type = glue_times]
solve(Base<double, T1>&, Base<double, T2>&)

Glue<T1, T2, glue_type>::Glue(T1&, T2&) [... glue_type = glue_solve_gen_def]
Col::Col(Base<double,T1>&) [T1 = Glue<Glue<Mat,Op<Mat,op_htrans>,glue_times>,Mat,glue_solve_gen_def>]
Mat: :operator=(Glue<T1, T2, glue_type>&) [... glue_type = glue_solve_gen_def]
glue_solve_gen_def::apply(Mat&, Glue<T1, T2, glue_solve_gen_def>&)
glue_solve_gen_full::apply(Mat&, Base<double, T1>&, Base<double, T2>&, uword)

Mat::Mat(Glue<T1, T2, glue_type>&) [T1 = Mat; T2 = Op<Mat,op_htrans>; glue_type = glue_times]
glue_times: :apply(Mat&, Glue<T1, T2, glue_times>&) [T1 = Mat; T2 = Op<Mat,op_htrans>]
glue_times_redirect<2>::apply(Mat&, Glue<T1, T2, glue_times>&) [T1 = Mat; T2 = Op<Mat,op_htrans>]
glue_times::apply(Mat&, TA&, TB&, double) [trans_A = false; trans_B = true; TA = Mat; TB = Mat]
Mat::set_size(uword, uword) [uword = long long unsigned int] [in_n_rows: 10@; in_n_cols: 100]
Mat::init(): acquiring memory

blas::syrk(...)

glue_solve_gen_full::apply(): detected square system

band_helper: :is_band(uword&, uword&, Mat&, uword) [uword = long long unsigned int]
trimat_helper::is_triu(Mat&)

trimat_helper::is_tril(Mat&)

glue_solve_gen_full::apply(): rcond + sym

auxlib: :solve_sym_rcond(Mat&, double&, Mat&, Base<double, T1>&) [T1 = Mat; ...]
Mat::operator=(Mat&) [this: ea67920; in_mat: e@a67860]

Mat::init_warm(uword, uword) [uword = long long unsigned int] [in_n_rows: 100; in_n_cols: 1]
Mat::init(): acquiring memory

lapack::lansy(...)

lapack: :sytrf(...)

lapack::sytrs(...)

lapack: :sycon(...)

Mat::destructor: releasing memory

Fig. 3: An abridged trace of internal function calls and debugging
messages resulting from line 14 in Fig. 2, containing the expression
vec x = solve( A * A.t(), b ).




IV. FunNcTioNALITY

The full documentation of the classes and functions provided by Armadillo is available at https://arma.sourceforge.net/docs.html.
An overview of the functionality is given in Tables I through to IX. Table I provides examples of Matlab syntax and corresponding
Armadillo syntax. Table Il briefly describes the member functions and variables of the mat class, the main matrix class in Armadillo.
Table III lists the main subset of overloaded C++ operators. Table IV overviews functions for generating matrices. Table V lists
various element-wise functions of matrices. Table VI lists the main forms of general functions of matrices. Table VII outlines
matrix decompositions, inverses, and equation solvers. Table VIII summarises the set of functions and classes focused on statistics.
Table IX lists functions specific to signal and image processing. In each table, only the main form of each function is shown; refer
to the online documentation to see all available functions and their corresponding forms.

Table I: Examples of Matlab syntax and conceptually corresponding Armadillo syntax. For submatrix access the exact conversion from Matlab
to Armadillo syntax requires taking into account that indexing starts at 0.

Matlab Armadillo Notes

A = zeros(k) mat A = zeros(k,k) generate square matrix with all elements set to zero

A = ones(k) mat A = ones(k,k) generate square matrix with all elements set to one

A = zeros(size(A)) A.zeros() set all elements to zero

A = ones(size(A)) A.ones() set all elements to one

A = rand(4,5) mat A = randu(4,5) generate matrix with random numbers drawn from uniform distribution
B = randn(4,5) mat B = randn(4,5) generate matrix with random numbers drawn from normal distribution
C = complex(A,B) cx_mat C = cx_mat(A,B) construct complex matrix out of two real matrices

A=L[1, 2; 3, 4; ] mat A = { {1, 2}, {3, 4} } generate matrix by directly specifying values

ACl, 1) =k A(Q, 9) = k indexing in Armadillo starts at 0, following C++ convention

A A.print("A:") print the matrix to standard output (std::cout)

size(A,1) A.n_rows member variables are read only

size(A,2) A.n_cols

numel (A) A.n_elem .n_elem indicates the total number of elements

AC:, k) A.col(k) read/write access to specific column

Ak, ) A.row(k) read/write access to specific row

AC:, p:q) A.cols(p, q) read/write access to submatrix spanning the specified columns
A(p:q, :) A.rows(p, Q) read/write access to submatrix spanning the specified rows
A(p:q, r:s) A( span(p, q), span(r, s) ) | A(span(first_row, last_row), span(first_col, last_col) )

A A.t() or trans(A) transpose (for complex matrices the conjugate is taken)

A! A.st() or strans(A) simple transpose (for complex matrices the conjugate is not taken)
Ax B A *B * indicates matrix multiplication

A .xB A%B % indicates element-wise multiplication

A./B A/ B / indicates element-wise division

A B solve(A,B) solve system of linear equations

X = A() X = vectorise(A) flatten matrix into column vector

X=[A B] X = join_rows(A,B)

X=[A; B] X = join_cols(A,B)

csvwrite('A.csv', A) | A.save("A.csv", csv_ascii) store data in comma-separated-value (CSV) format

A = csvread('A.csv') | A.load("A.csv", csv_ascii)



https://arma.sourceforge.net/docs.html

Table II: Subset of member functions and variables of the mat class, the main matrix object in Armadillo.

Function/Variable Description

.N_rows number of rows (read only)

.n_cols number of columns (read only)

.n_elem total number of elements (read only)

(1) access the i-th element, assuming column-by-column layout; indexing starts at O
(r,c) access the element at row » and column c; indexing starts at O

[i] as per (i) defined above, but no bounds check; use only after debugging
.at(r,c) as per (r,c) defined above, but no bounds check; use only after debugging
.memptr() obtain the raw memory pointer to element data; caveat: use with caution
.reset() set the number of elements to zero

.set_size(n_rows, n_cols)

change size to given dimensions, without preserving data (fast)

.reshape(n_rows, n_cols)
.resize(n_rows, n_cols)

change size to given dimensions, with elements copied column-wise (slow)
change size to given dimensions, while preserving elements and their layout (slow)

.zeros(n_rows, n_cols)
.ones(n_rows, n_cols)

set all elements to zero, optionally first resizing to given dimensions
as above, but set all elements to one

.randu(n_rows, n_cols)
.randn(n_rows, n_cols)

as above, but set elements to uniformly distributed random values in [0,1] interval
as above, but use a Gaussian/normal distribution with y =0 and o = 1

fil1(k)
.replace(old_val, new_val)
.for_each( [](double& val) {...} )

set all elements to be equal to k
replace all instances of old_val with new_val
for each element, pass its reference to the specified lambda function

.is_empty()
.is_finite()

test whether there are no elements
test whether all elements are finite

.is_square()
.is_vec()

test whether the matrix is square
test whether the matrix is a vector

.is_sorted()
.is_symmetric(tolerance)

test whether the matrix is sorted
test whether the matrix is symmetric within optionally specified tolerance

.has_inf () test whether any element is +co

.has_nan() test whether any element is not-a-number

.begin() iterator pointing at the first element

.end() iterator pointing at the past-the-end element

.begin_col(i) iterator pointing at first element of column i

.end_col(3j) iterator pointing at one element past column j
.print(header) print elements to the cout stream, with an optional text header

.raw_print(header)
.brief_print(header)

as per .print(), but do not change stream settings
print a shortened/abridged version of the matrix, with optional text header

.save(name, format)
.load(name, format)

store matrix in the specified file, optionally specifying storage format
retrieve matrix from the specified file, optionally specifying format

.diag(k) read/write access to k-th diagonal (default: £ = 0)

.col(i) read/write access to column i

.row(i) read/write access to row i

.cols(a, b) read/write access to submatrix, spanning from column a to column b
.rows(a, b) read/write access to submatrix, spanning from row a to row b

.submat( span(a,b), span(c,d) )
.submat( p, g, size(A) )

read/write access to submatrix spanning rows a to b and columns c¢ to d
read/write access to submatrix starting at row p and col g with size same as matrix A

.cols( vector_of_col_indices )
.rows( vector_of_row_indices )
.elem( vector_of_indices )

read/write access to columns corresponding to the specified indices
read/write access to rows corresponding to the specified indices
read/write access to matrix elements corresponding to the specified indices

.each_col()
.each_row()

repeat a vector operation on each column (eg. A.each_col() += col_vector)
repeat a vector operation on each row (eg. A.each_row() += row_vector)

.swap_cols(p, q)
.swap_rows(p, Q)

swap contents of specified columns
swap contents of specified rows

.insert_cols(col, X)
.insert_rows(row, X)

insert copy of X at specified column
insert copy of X at specified row

.shed_cols(first_col, last_col)
.shed_rows(first_row, last_row)

remove the specified range of columns
remove the specified range of rows

.min()
.max()

return minimum value
return maximum value

.index_min()
.index_max()

return index of minimum value
return index of maximum value

.t0O return transposed version of the matrix; for complex matrices, conjugate is taken

.stQ) return transposed version of the matrix, without taking the conjugate

.as_col() return flattened version of the matrix as a column vector, via concatenating all columns
.as_row() return flattened version of the matrix as a row vector, via concatenating all rows




Table III: Subset of matrix operations involving overloaded C++ operators.

Operation
A -k

Description
subtract scalar k from all elements in matrix A
subtract each element in matrix A from scalar k&

I
>

+ k, k + A | add scalar k to all elements in matrix A
* k, k * A | multiply matrix A by scalar &
+ add matrices A and B

subtract matrix B from A

matrix multiplication of A and B

element-wise multiplication of matrices A and B

element-wise division of matrices A and B

element-wise equality evaluation between matrices A and B

[caveat: use approx_equal() to test whether all corresponding elements are approximately equal]
element-wise non-equality evaluation between matrices A and B

element-wise evaluation whether elements in matrix A are greater-than-or-equal to elements in B
element-wise evaluation whether elements in matrix A are less-than-or-equal to elements in B
element-wise evaluation whether elements in matrix A are greater than elements in B
element-wise evaluation whether elements in matrix A are less than elements in B
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Table I'V: Subset of functions for generating matrices and vectors, showing their main form.

Function Description
eye(n_rows, n_cols) matrix with elements on main diagonal set to one (identity matrix for n_rows = n_cols)
ones(n_rows, n_cols) matrix with all elements set to one
zeros(n_rows, n_cols) matrix with all elements set to zero

randu(n_rows,
randn(n_rows,

n_cols, distr_param(a,b))
n_cols, distr_param(u,o))

matrix with uniformly distributed random values in [a, b] interval; default: a=0, b=1
matrix with random values from a normal distribution; default: ;=0, o=1

randi(n_rows, n_cols, distr_param(a,b)) matrix with random integer values in [a, b] interval

x%Vexp(x/b)

randg(n_rows, n_cols, distr_param(a,b)) matrix with random values from a gamma distribution p(x) = b1 (a)

linspace(start, end, n)
logspace(A, B, n)

vector with n elements, linearly spaced from start upto (and including) end
vector with n elements, logarithmically spaced from 104 upto (and including) 108

regspace(start, A, end) vector with regularly spaced elements: [ start, (start + A), (start + 2A), ..., (start + MA) 1,

where M = floor((end - start)/A), so that (start + M A) < end

Table V: Element-wise functions: produce a matrix by applying a function to each element of matrix A.

Function Description
exp(A) base-e exponential: e*
exp2(A) base-2 exponential: 2*
exp10(A) base-10 exponential: 10*
trunc_exp(A) | base-e exponential, truncated to avoid co
log(A) natural log: log,, (x)
log2(A) base-2 log: log, (x)
log10(A) base-10 log: log;((x)
trunc_log(A) | natural log, truncated to avoid +oo
square(A) square: x?
sqrt(A) square root: vx
pow(A, p) raise to the power of p: xP
abs(A) magnitude of each element: |x|
floor(A) largest integral value that is not greater than the input value
ceil(A) smallest integral value that is not less than the input value
round(A) round to nearest integer, with halfway cases rounded away from zero
trunc(A) round to nearest integer, towards zero
erf(A) error function
erfc(A) complementary error function
tgamma(A) gamma function
lgamma(A) natural log of the absolute value of gamma function
sign(A) signum function; for each element a in A, the corresponding element b in the produced matrix is:

-1 if a<0

b= { 0 if a=0

+1 if a>0

trig(A) trigonometric function, where trig is one of:
cos, acos, cosh, acosh, sin, asin, sinh, asinh, tan, atan, tanh, atanh




Table VI: Subset of general functions of matrices, showing their main form. For functions with the dim argument, dim = 0 indicates to process
each column, while dim = I indicates to process each row); by default dim = 0.

Function Description

accu(A) accumulate (sum) all elements of matrix A into a scalar

all(A,dim) return a vector indicating whether all elements in each column or row of A are non-zero
any(A,dim) return a vector indicating whether any element in each column or row of A is non-zero

approx_equal(A, B, met, tol)
as_scalar(expression)
clamp(A, min, max)

return a bool indicating whether all corresponding elements in A and B are approximately equal
evaluate an expression that results in a 1X1 matrix, then convert the result to a pure scalar
create a copy of matrix A with each element clamped between min and max

cond(A)
conj(C)
cross(A, B)

condition number of matrix A (the ratio of the largest singular value to the smallest)
complex conjugate of complex matrix C
cross product of A and B, assuming they are 3 dimensional vectors

cumprod(A, dim)
cumsum(A, dim)
det(A)

cumulative product of elements in each column or row of matrix A
cumulative sum of elements in each column or row of matrix A
determinant of square matrix A

diagmat(A, k)
diagvec(A, k)
diags(V, D, n_rows, n_cols)

interpret matrix A as a diagonal matrix (elements not on k-th diagonal are treated as zero)
extract the k-th diagonal from matrix A (default: k£ = 0)
generate matrix with diagonals specified by vector D copied from corresponding vectors in matrix V/

diff(A, k, dim)

differences between elements in each column or each row of A; k = number of recursions

dot(A,B) dot product of A and B, assuming they are vectors with equal number of elements
expmat (A) matrix exponential of square matrix A
find(A) find indices of non-zero elements of A; find(A > k) finds indices of elements greater than k

imag(C) / real(C)
ind2sub(size(A), index)

extract the imaginary / real part of complex matrix C
convert a linear index (or vector of indices) to subscript notation, using the size of matrix A

join_rows(A, B)
join_cols(A, B)

append each row of B to its respective row of A
append each column of B to its respective column of A

kron(A, B) Kronecker tensor product of A and B

log_det(x, sign, A) log determinant of square matrix A, such that the determinant is exp(x)*sign
logmat (A) complex matrix logarithm of square matrix A

min(A, dim) find the minimum in each column or row of matrix A

max (A, dim) find the maximum in each column or row of matrix A

nonzeros(A) return a column vector containing the non-zero values of matrix A

norm(A, p) p-norm of matrix A, withp=1,2,---, orp = “-inf”, “inf”, “fro”
norm2est(A) fast estimate of the 2-norm (spectral norm) of matrix A

normalise(A, p, dim)

return the normalised version of A, with each column or row normalised to unit p-norm

powmat (A, n)
prod(A, dim)
rank(A)

raise square matrix A to the power of n
product of elements in each column or row of matrix A
rank of matrix A

rcond(A)
repelem(A, nr, nc)
repmat(A, p, @

estimate the reciprocal of the condition number of square matrix A
generate matrix by replicating each element of matrix A, with nr and nc copies per row and column
replicate matrix A in a block-like fashion, resulting in p by g blocks of matrix A

reshape(A, r, ¢)
resize(A, r, c)
reverse(A, dim)

create matrix with » rows and ¢ columns by copying elements from A column-wise
create matrix with r rows and ¢ columns by copying elements and their layout from A
generate copy of matrix A with the order of elements reversed in each column or row

shift(A, n, dim)
shuffle(A, dim)
size(A)

copy matrix A with the elements shifted by n positions in each column or row
copy matrix A with elements shuffled in each column or row
obtain the dimensions of matrix A

sort(A, direction, dim)
sort_index(A, direction)
sqrtmat (A)

copy A with elements sorted (in ascending or descending direction) in each column or row
generate a vector of indices describing the sorted order of the elements in matrix A
complex square root of square matrix A

sum(A, dim)
sub2ind(size(A), row, col)
symmatu(A) / symmatl(A)

sum of elements in each column or row of matrix A
convert subscript notation (row,col) to a linear index, using the size of matrix A
generate symmetric matrix from square matrix A

trace(A)
trans(A)
strans(C)

sum of the elements on the main diagonal of matrix A
transpose of matrix A (for complex matrices, conjugate is taken); use A.#() for shorter form
simple matrix transpose of complex matrix C, without taking the conjugate

trapz(A, B, dim)
trimatu(A) / trimatl(A)
unique(A)

trapezoidal integral of B with respect to spacing in A, in each column or row of B
generate upper/lower triangular matrix from square matrix A
return the unique elements of A, sorted in ascending order

vecnorm(A, p, dim)
vectorise(A, dim)

compute the p-norm of each column or row vector in matrix A
generate flattened version of matrix A




Table VII: Subset of functions for matrix decompositions, factorisations, inverses and equation solvers, showing their main form.

Function Description

chol(X) Cholesky decomposition of symmetric positive-definite matrix X

eig_sym(X) eigen decomposition of a symmetric/hermitian matrix X

eig_gen(X) eigen decomposition of a general (non-symmetric/non-hermitian) square matrix X
eig_pair(A, B) eigen decomposition for pair of general square matrices A and B

inv(X) inverse of a square matrix X

inv_sympd(X)

inverse of symmetric positive definite matrix X

lu(L, U, P, X)

lower-upper decomposition of X, such that PX = LU and X = P’LU

null(X) orthonormal basis of the null space of matrix X

orth(X) orthonormal basis of the range space of matrix X

pinv(X) Moore-Penrose pseudo-inverse (generalised inverse) of matrix X
aqr(Q, R, X) QR decomposition of X, such that QR = X

qr_econ(Q, R, X)

economical QR decomposition

az(AA, BB, Q, Z, A, B)

generalised Schur decomposition for pair of general square matrices A and B

schur (X) Schur decomposition of square matrix X

solve(A, B) solve a system of linear equations AX = B, where X is unknown
svd(X) singular value decomposition of X

svd_econ(X) economical singular value decomposition of X

syl(X) Sylvester equation solver

Table VIII: Subset of functions for statistics, showing their main form. For functions with the dim argument, dim = 0 indicates to process each
column, while dim = I indicates to process each row); by default dim = 0.

Function/Class Description
cor(A, B) generate matrix of correlation coefficients between variables in A and B
cov(A, B) generate matrix of covariances between variables in A and B

gmm_diag / gmm_full

classes for modelling data as multivariate Gaussian mixture models,
using either diagonal or full covariance matrices

kmeans(means, A, k, ...)

cluster column vectors in matrix A into k disjoint sets, storing the set centers in means

hist(A, centers, dim)
histc(A, edges, dim)

generate matrix of histogram counts for each column or row of A, using given bin centers
generate matrix of histogram counts for each column or row of A, using given bin edges

quantile(A, P, dim)

for each row or column vector of matrix A, calculate the quantiles
corresponding to the cumulative probability values in the given P vector

princomp(A)
running_stat
running_stat_vec

principal component analysis of matrix A
class for running statistics of a continuously sampled one dimensional signal
class for running statistics of a continuously sampled multi-dimensional signal

mean(A, dim)
median(A, dim)

stddev(A, norm_type, dim)

var(A, norm_type, dim)

find the mean in each column or row of matrix A

find the median in each column or row of matrix A

find the standard deviation in each column or row of A, using specified normalisation
find the variance in each column or row of matrix A, using specified normalisation

normpdf (A, M, S)

for each scalar in A, compute its probability density function according to a Gaussian distribution
using the corresponding mean in M and the corresponding standard deviation in §

normcdf (A, M, S)

as per normpdf(), but compute the cumulative distribution function

mvnrnd(M, C, N)

generate a matrix with N random column vectors from a multivariate Gaussian distribution
with mean M and covariance matrix C

wishrnd(S, df)

generate a random matrix sampled from the Wishart distribution with parameters S and df,
where S is a symmetric positive definite matrix and df specifies the degrees of freedom

Table IX: Subset of functions for signal and image processing, showing their main form.

Function/Class Description

conv(A, B) 1D convolution of vectors A and B

conv2(A, B) 2D convolution of matrices A and B

fft(A, n) fast Fourier transform of vector A, with transform length n

fft2(A, n_rows, n_cols) fast Fourier transform of matrix A, with transform size of n_rows and n_cols
ifft(C, n) inverse fast Fourier transform of complex vector C, with transform length n

ifft2(C, n_rows, n_cols)

inverse fast Fourier transform of complex matrix C, with transform size of n_rows and n_cols

interpl1(X, Y, XI, YI)

given a 1D function specified in vector X (locations) and vector Y (values),
generate vector Y/ containing interpolated values at given locations X7

interp2(X, Y, Z, XI, YI, ZI)

given a 2D function specified by matrix Z with coordinates given by vectors X and Y,
generate matrix ZI which contains interpolated values at the coordinates given by vectors X/ and Y/




V. CONCLUSION

Armadillo facilitates easy and maintainable representation of
arbitrary linear algebra expressions in C++ that are efficiently
mapped to underlying BLAS and LAPACK operations. Users do
not need to worry about cumbersome manual memory manage-
ment or complicated calls to BLAS and LAPACK subroutines.
There is virtually no performance penalty for the abstractions
provided by Armadillo. Moreover, through under-the-hood
template metaprogramming and automatic optimisations of
expressions, Armadillo can achieve considerable reductions in
processing time over direct and/or naive implementations.

Work on Armadillo started in 2008. Over the years the library
has been iteratively and collaboratively developed with feedback
from the wider scientific and engineering communities. The
library provides over 200 functions; in addition to elementary
operations, there are functions for statistics, signal processing,
non-contiguous submatrix views, and various matrix factorisa-
tions. The library is currently comprised of about 135,000 lines
of templated code, excluding BLAS and LAPACK routines.
Support is provided for matrices with single- and double-
precision floating point elements (in both real and complex
forms), as well as integer elements. Dense and sparse storage
formats are supported.

Armadillo is now in a mature state and in wide production use.
For example, Armadillo has been successfully used to accelerate
computations in open-source projects such as the ensmallen
library for numerical optimisation [18] and the mipack library
for machine learning [19], which provide production-ready
applications for a variety of environments, including low-
resource devices such as small microcontrollers. Armadillo has
also been used for accelerating over 1000 packages for the R
statistical environment [20].

Armadillo can be obtained from https://arma.sourceforge.net,
with the source code provided under the permissive Apache 2.0
license [21], [22], which allows unencumbered use in commer-
cial products. Armadillo is also included as part of all major
Linux distributions.

In future work we plan to extend Armadillo to include support
for half-precision floating point and ‘brain floating point’ (BF16)
element types [23], as well as to bring the same kinds of
expression optimisations to GPU-based linear algebra via the
companion Bandicoot library [24].
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