SCIP Doxygen Documentation
 
Loading...
Searching...
No Matches
branch_multaggr.c
Go to the documentation of this file.
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2/* */
3/* This file is part of the program and library */
4/* SCIP --- Solving Constraint Integer Programs */
5/* */
6/* Copyright (c) 2002-2024 Zuse Institute Berlin (ZIB) */
7/* */
8/* Licensed under the Apache License, Version 2.0 (the "License"); */
9/* you may not use this file except in compliance with the License. */
10/* You may obtain a copy of the License at */
11/* */
12/* http://www.apache.org/licenses/LICENSE-2.0 */
13/* */
14/* Unless required by applicable law or agreed to in writing, software */
15/* distributed under the License is distributed on an "AS IS" BASIS, */
16/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */
17/* See the License for the specific language governing permissions and */
18/* limitations under the License. */
19/* */
20/* You should have received a copy of the Apache-2.0 license */
21/* along with SCIP; see the file LICENSE. If not visit scipopt.org. */
22/* */
23/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
24/**@file branch_multaggr.c
25 * @ingroup DEFPLUGINS_BRANCH
26 * @brief fullstrong branching on fractional and multi-aggregated variables
27 * @author Anna Melchiori
28 * @author Gerald Gamrath
29 *
30 * This branching rule uses all fractional binary and integer variables as candidates,
31 * as well as fractional multiaggregated binary and integer variables. Although not
32 * directly contained in the presolved problem anymore, the multi-aggregation provides
33 * an affine linear sum of integer variables, on which branching can be performed.
34 *
35 * For more details, see
36 * G.Gamrath, A.Melchiori, T.Berthold, A.M.Gleixner, D.Salvagnin: Branching on Multi-aggregated Variables
37 * (http://dx.doi.org/10.1007/978-3-319-18008-3_10)
38 */
39/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
40
44#include "scip/cons_linear.h"
45#include "scip/pub_branch.h"
46#include "scip/pub_cons.h"
47#include "scip/pub_message.h"
48#include "scip/pub_tree.h"
49#include "scip/pub_var.h"
50#include "scip/scip_branch.h"
51#include "scip/scip_cons.h"
52#include "scip/scip_general.h"
53#include "scip/scip_lp.h"
54#include "scip/scip_mem.h"
55#include "scip/scip_message.h"
56#include "scip/scip_numerics.h"
57#include "scip/scip_param.h"
58#include "scip/scip_prob.h"
59#include "scip/scip_probing.h"
61#include "scip/scip_timing.h"
62#include "scip/scip_tree.h"
63#include "scip/scip_var.h"
64#include "scip/set.h"
65#include "scip/struct_scip.h"
66#include "scip/var.h"
67#include <string.h>
68
69#define BRANCHRULE_NAME "multaggr"
70#define BRANCHRULE_DESC "fullstrong branching on fractional and multi-aggregated variables"
71#define BRANCHRULE_PRIORITY 0
72#define BRANCHRULE_MAXDEPTH -1
73#define BRANCHRULE_MAXBOUNDDIST 1.0
74
75
76#define DEFAULT_REEVALAGE 0LL /**< number of intermediate LPs solved to trigger reevaluation of strong branching
77 * value for a variable that was already evaluated at the current node */
78#define DEFAULT_MAXPROPROUNDS 0 /**< maximum number of propagation rounds to be performed during multaggr branching
79 * before solving the LP (-1: no limit, -2: parameter settings) */
80#define DEFAULT_PROBINGBOUNDS TRUE /**< should valid bounds be identified in a probing-like fashion during multi-aggr
81 * branching (only with propagation)? */
82
83/*
84 * Data structures
85 */
86
87/** branching rule data */
88struct SCIP_BranchruleData
89{
90 SCIP_Longint reevalage; /**< number of intermediate LPs solved to trigger reevaluation of strong branching
91 * value for a variable that was already evaluated at the current node */
92 SCIP_Bool probingbounds; /**< should valid bounds be identified in a probing-like fashion during strong
93 * branching (only with propagation)? */
94 int lastcand; /**< last evaluated candidate of last branching rule execution */
95 int maxproprounds; /**< maximum number of propagation rounds to be performed during strong branching
96 * before solving the LP (-1: no limit, -2: parameter settings) */
97 int skipsize; /**< size of skipdown and skipup array */
98 SCIP_Bool* skipdown; /**< should be branching on down child be skipped? */
99 SCIP_Bool* skipup; /**< should be branching on up child be skipped? */
100#ifdef SCIP_STATISTIC
101 SCIP_CLOCK* clckstrongbr; /**< clock to store the time spent inside the strong branching function on fractional variables */
102 SCIP_CLOCK* clckmultaggrbr; /**< clock to store the time spent inside the strong branching function on multi-aggragated variables */
103 SCIP_Real* ratioggain; /**< for each occurence of a branching on a multi-aggregated variable we store the ratio of the gain that
104 * we would have obtained branching on the best fractional variable over the gain obtained
105 * branching on the current multi-aggregated variable */
106 SCIP_Real ameanratio; /**< arithmetic mean of the ratioggain array */
107 SCIP_Bool noupdate; /**< pointer to store if the probing LP has not been solved so we do not want to
108 * update statistics */
109 int firstmultaggrdepth; /**< depth of the first branching on a multi-aggregated variable */
110 int rundepth; /**< the run of the first multi-aggregated branching */
111 int nmultaggrbranch; /**< number of branchings on multi-aggregated variables */
112 int nfracbranch; /**< number of branchings on fractional variables */
113 int nEscore; /**< number of times that the bestscore over all multi-aggregated variables is equal to the best
114 * fractional variables score and thus we do not branch on the multi-aggregate variable */
115 int nmultaggrcutoff; /**< number of cutoffs detected during the probing mode on multi-aggregated variables */
116 int nmultaggrconsadd; /**< number of times that a probing constraint of a multi-aggregated variable has been
117 * added to the original problem */
118 int nfractcutoff; /**< number of cutoffs detected during strong branching on fractional variables */
119 int nfractconsadd; /**< number of times that during strong branching on fractional variables a constraint has been
120 * added to the original problem or a variables domain has been reduced */
121 int nmultaggrvars; /**< number of multi-aggregated variables in the problem of the last run */
122 int nrun; /**< number of restarts */
123 int size; /**< size of the provided array to store the ratio gain */
124 int nstrongbrcall; /**< number of times that the selectVarstrongBranching function has been called */
125 int nmultaggrbrcall; /**< number of times that the selectVarMultAggrBranching function has been called */
126 int totallpcands; /**< total number of observed lpcands over all selectVarstrongBranching function calls */
127 int totalmultaggrcands; /**< total number of observed multi-aggregregated candidates over all selectVarMultAggrBranching
128 * function calls */
129#endif
130};
131
132
133/*
134 * Local methods
135 */
136
137/* this function ensures that the allocated memory is enough to store statistics data */
138#ifdef SCIP_STATISTIC
139static
141 SCIP* scip, /**< original SCIP data structure */
142 SCIP_BRANCHRULEDATA* branchruledata /**< branching rule data */
143 )
144{
145 assert(scip != NULL);
146 assert(branchruledata != NULL);
147 assert(branchruledata->ratioggain != NULL);
148 assert(branchruledata->nmultaggrbranch >= 0);
149 assert(branchruledata->size >= 0);
150
151 /* check whether the size of the array is big enough; reallocate memory if needed */
152 if( branchruledata->nmultaggrbranch + 1 > branchruledata->size )
153 {
154 int newsize = SCIPcalcMemGrowSize(scip, branchruledata->nmultaggrbranch + 1);
155 assert(newsize >= branchruledata->nmultaggrbranch + 1);
156 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &branchruledata->ratioggain, branchruledata->size, newsize) );
157 branchruledata->size = newsize;
158 }
159 return SCIP_OKAY;
160}
161#endif
162
163/* this function gives us the best candidate for branching among the multi-aggregated variables of the problem
164 * and the best fractional integer variable already selected by strong branching
165*/
166static
168 SCIP* scip, /**< original SCIP data structure */
169 SCIP_VAR** bestcand, /**< the best candidate variable selected by strong branching */
170 SCIP_Real* bestscore, /**< score of the best branching candidate */
171 SCIP_Real* bestsol, /**< solution value of the best branching candidate */
172 SCIP_Real* bestdown, /**< objective value of the down node when branching on bestcand */
173 SCIP_Real* bestup, /**< objective value of the up node when branching on bestcand */
174 SCIP_Bool* bestdownvalid, /**< is bestdown a valid dual bound for the down branch? */
175 SCIP_Bool* bestupvalid, /**< is bestup a valid dual bound for the up branch? */
176 SCIP_Real* provedbound, /**< proved dual bound for the current subtree */
177 SCIP_Real* estimatedown, /**< pointer to store the down child nodes estimate */
178 SCIP_Real* estimateup, /**< pointer to store the up child nodes estimate */
180 SCIP_Real* bestmultaggrscore, /**< pointer to store the multi aggregated score */
181#endif
182 SCIP_RESULT* result /**< pointer to store results of branching */
183 )
184{
188 SCIP_NODE* node;
189 SCIP_Real* fixvarssols;
190 SCIP_Real fixvarssol;
191 SCIP_Real lpobjval;
192 SCIP_Bool exactsolve;
193 SCIP_Bool allcolsinlp;
194 SCIP_Bool downnodeinf = FALSE;
195 SCIP_Bool startprobing = TRUE;
196 SCIP_Bool endprobing = FALSE;
197 int nfixvars;
198 int i;
199 int j;
200 int k;
201
202 /* import branchrule data for statistics */
203#ifdef SCIP_STATISTIC
205 SCIP_BRANCHRULEDATA* branchruledata;
206
209
210 branchruledata = SCIPbranchruleGetData(branchrule);
211 assert(branchruledata != NULL);
212#endif
213
214 assert(scip != NULL);
215 assert(bestcand != NULL);
217
218 /* check, if we want to solve the problem exactly, meaning that strong branching information is not useful
219 * for cutting off sub problems and improving lower bounds of children
220 */
222
223 /* check, if all existing columns are in LP, and thus the strong branching results give lower bounds */
225
226 /* get fixed variables */
229 SCIPdebugMsg(scip, " fractional variable: <%s> with value: %f is selected by strong branching\n", SCIPvarGetName(*bestcand), *bestsol);
230
231 /* check if we would exceed the depth limit */
233 {
234 SCIPdebugMsg(scip, "cannot perform probing in selectVarMultAggrBranching, depth limit reached.\n");
236 return SCIP_OKAY;
237 }
238
239 if( nfixvars != 0 )
240 {
241 assert(fixvars != NULL);
242
244 lpobjval = SCIPgetLPObjval(scip);
245
246 /* store the values of the fixed variables at the current optimal solution */
247 for( i = 0; i < nfixvars; i++ )
248 {
249 assert(fixvars[i] != NULL);
251 }
252
253 for( i = 0; i < nfixvars; i++ )
254 {
255 assert(fixvars[i] != NULL);
256
257 /* only integer and binary multi-aggregated variables are potential branching candidates */
260 {
262
263 /* start probing mode for the fractional multi-aggregated variable */
265 {
267 SCIP_VAR** upvars = NULL;
268 SCIP_Real* downvarssols = NULL;
269 SCIP_Real* upvarssols = NULL;
272 SCIP_Real downobjval;
273 SCIP_Real upobjval;
274 SCIP_Real estimateprobdown = 0.0;
275 SCIP_Real estimateprobup = 0.0;
276 SCIP_Bool downinf;
277 SCIP_Bool upinf;
278 SCIP_Bool lperror;
279 int ndownvars;
280 int nupvars;
281
282 /* start the probing mode if this is the first entrance */
283 if( startprobing )
284 {
288
289 SCIPdebugMsg(scip, "PROBING MODE:\n");
290 }
291
292 SCIPdebugMsg(scip, " multi-aggregated variable: <%s> with value: %f\n", SCIPvarGetName(fixvars[i]), fixvarssol);
293
294 SCIPstatistic(branchruledata->totalmultaggrcands += 1);
295
296 /* create the multi-aggregated rounded down constraint */
300 TRUE, TRUE, FALSE, FALSE, FALSE, TRUE) );
302
303 /* create the down child probing node */
305 node = SCIPgetCurrentNode(scip);
306 assert(node != NULL);
307
310
311#ifdef PRINTNODECONS
312 SCIPdebugMsg(scip, " created down probing node with constraint:\n");
314 SCIPinfoMessage(scip, NULL, "\n");
315#endif
316
317 /* solve the down child probing node */
323
324 /* break the branching rule if an error occurred, problem was not solved, iteration or time limit was reached */
325 if( lperror )
326 {
327 SCIPdebugMsg(scip, "error solving down node probing LP: status=%d\n", solstatdown);
328 SCIPstatistic(branchruledata->noupdate = TRUE);
329 break;
330 }
331
335
336 if( !downinf )
337 {
338 /* when an optimal solution has been found calculate down child's estimate based on pseudo costs */
339 /* estimate = lowerbound + sum(min{f_j * pscdown_j, (1-f_j) * pscup_j}) */
342
343 for( j = 0 ; j < ndownvars; j++ )
344 {
345 SCIP_Real estimateincr;
346 SCIP_Real pscdown;
347 SCIP_Real pscup;
348
349 assert(downvars != NULL);
350 assert(downvars[j] != NULL);
351
355
357 }
358 }
360
361 /* create the multi-aggregated rounded up constraint */
366
367 /* create the up child probing node */
369 node = SCIPgetCurrentNode(scip);
370
373
374#ifdef PRINTNODECONS
375 SCIPdebugMsg(scip, " created up probing node with constraint:\n");
377 SCIPinfoMessage(scip, NULL, "\n");
378#endif
379 /* solve the up child probing node */
385
386 /* break the branching rule if an error occurred, problem was not solved, iteration or time limit was reached */
387 if( lperror )
388 {
389 SCIPdebugMsg(scip, "error solving up node probing LP: status=%d\n", solstatup);
390 SCIPstatistic(branchruledata->noupdate = TRUE);
391 break;
392 }
393
397
398 SCIPdebugMsg(scip, " down node objval: %g up node objval: %g\n", downobjval, upobjval);
399
400 if( !upinf )
401 {
402 /* when an optimal solution has been found calculate up child's estimate based on pseudo costs */
403 /* estimate = lowerbound + sum(min{f_j * pscdown_j, (1-f_j) * pscup_j}) */
406
407 for( k = 0 ; k < nupvars; k++ )
408 {
409 SCIP_Real estimateincr;
410 SCIP_Real pscdown;
411 SCIP_Real pscup;
412
413 assert(upvars != NULL);
414 assert(upvars[k] != NULL);
415
420 }
421 }
423
424 /* check whether the children nodes are solved to optimality and give a valid new lower bound or not */
425 if( downinf || upinf )
426 {
427 /* check if the LP is a valid relaxation and we can then collect new information */
428 if( allcolsinlp )
429 {
430 /* cut off the node either when both children are infeasible or the objective limit was reached;
431 * if only one child is feasible with LP value smaller than objective limit, add the corresponding
432 * constraint to the problem and break the branching rule in order to solve the updated LP
433 */
434 if( downinf && upinf )
435 {
436 SCIPdebugMsg(scip, "node can be cut off due to strong branching on multi-aggregated variable <%s>\n",
438 SCIPstatistic(branchruledata->nmultaggrcutoff += 1);
439
441 break;
442 }
443 else
444 {
445 assert(!lperror);
446
447 if( downinf )
449
450 SCIPdebugMsg(scip, "%s child of multi-aggregated variable <%s> is infeasible\n",
451 downinf ? "down" : "up", SCIPvarGetName(fixvars[i]) );
452 SCIPstatistic(branchruledata->nmultaggrconsadd += 1);
453
455 break;
456 }
457 }
458 }
459 else
460 {
461 /* if both children are solved to optimality and they both give a new valid bound, calculate the score of the
462 * multi-aggregated variable
463 */
464 SCIP_Real downgain;
465 SCIP_Real upgain;
466 SCIP_Real down;
467 SCIP_Real up;
468 SCIP_Real score;
469 SCIP_Real minbound;
470
471 assert(!downinf);
472 assert(!upinf);
473 assert(!lperror);
474
475 SCIPdebugMsg(scip, " both probing nodes are valid while branching on multi-aggregated variable: <%s>\n ", SCIPvarGetName(fixvars[i]));
476
477 down = MAX(downobjval, lpobjval);
478 up = MAX(upobjval, lpobjval);
479 downgain = down - lpobjval;
480 upgain = up - lpobjval;
482
483 if( allcolsinlp && !exactsolve )
484 {
485 /* the minimal lower bound of both children is a proved lower bound of the current subtree */
488 }
489
491 if( score > *bestmultaggrscore )
492 *bestmultaggrscore = score;
493 );
494
495 /* update the best branching candidate and all its values if a strictly greater score has been found */
496 if( score > *bestscore )
497 {
499 if( branchruledata->nmultaggrbranch == 0 )
500 {
501 branchruledata->rundepth = SCIPgetNRuns(scip);
502 branchruledata->firstmultaggrdepth = SCIPgetFocusDepth(scip);
503 }
504 )
505
506 SCIPdebugMsg(scip, " <%s> is a better candidate for branching\n", SCIPvarGetName(fixvars[i]));
507
508 *bestscore = MAX(score, *bestscore);
509 *bestcand = fixvars[i];
510 *bestsol = fixvarssol;
512 *bestup = upobjval;
514 *bestupvalid = TRUE;
517 }
519 assert(bestcand != NULL);
520 assert(bestup != NULL);
521 assert(bestdown != NULL);
522 }
523 }
524 }
525 }
526
527 /* end probing mode */
528 if( endprobing )
529 {
531 }
532
533 SCIPdebugMsg(scip, "\n");
534
535 /* one of the child nodes was infeasible, add the other constraint to the current node */
536 if( *result == SCIP_CONSADDED )
537 {
538 node = SCIPgetCurrentNode(scip);
539 if( downnodeinf )
540 {
547 SCIPdebugMsg(scip, " <%s> new valid constraint has been added to the original problem\n", SCIPconsGetName(probingconsup));
549 }
550 else
551 {
555 TRUE, TRUE, FALSE, FALSE, FALSE, TRUE) );
558 SCIPdebugMsg(scip, " <%s> new valid constraint has been added to the original problem\n", SCIPconsGetName(probingconsdown));
560 }
561 }
563 }
564 return SCIP_OKAY;
565}
566
567
568/*
569 * Callback methods of branching rule
570 */
571
572/** copy method for branchrule plugins (called when SCIP copies plugins) */
573static
575{ /*lint --e{715}*/
576 assert(scip != NULL);
579
580 /* call inclusion method of branchrule */
582
583 return SCIP_OKAY;
584}
585
586/** destructor of branching rule to free user data (called when SCIP is exiting) */
587static
589{ /*lint --e{715}*/
590 SCIP_BRANCHRULEDATA* branchruledata;
591
592 /* free branching rule data */
593 branchruledata = SCIPbranchruleGetData(branchrule);
594 assert(branchruledata != NULL);
595
596 SCIPstatistic(SCIPfreeBlockMemoryArrayNull(scip , &branchruledata->ratioggain, branchruledata->size));
597 SCIPfreeBlockMemoryArrayNull(scip, &branchruledata->skipdown, branchruledata->skipsize);
598 SCIPfreeBlockMemoryArrayNull(scip, &branchruledata->skipup, branchruledata->skipsize);
599
600 SCIPfreeBlockMemory(scip, &branchruledata);
602
603 return SCIP_OKAY;
604}
605
606/** initialization method of branching rule (called after problem was transformed) */
607static
609{ /*lint --e{715}*/
610 SCIP_BRANCHRULEDATA* branchruledata;
611
612 branchruledata = SCIPbranchruleGetData(branchrule);
613 assert(branchruledata != NULL);
614
615 branchruledata->lastcand = 0;
617 branchruledata->firstmultaggrdepth = 0;
618 branchruledata->nmultaggrbranch = 0;
619 branchruledata->nfracbranch = 0;
620 branchruledata->nEscore = 0;
621 branchruledata->nmultaggrcutoff = 0;
622 branchruledata->nmultaggrconsadd = 0;
623 branchruledata->nfractcutoff = 0;
624 branchruledata->nfractconsadd = 0;
625 branchruledata->nrun = 0;
626 branchruledata->size = 100;
627 branchruledata->ameanratio = 0.0;
628 branchruledata->noupdate = FALSE;
629 branchruledata->clckstrongbr = NULL;
630 branchruledata->clckmultaggrbr = NULL;
631 branchruledata->nstrongbrcall = 0;
632 branchruledata->nmultaggrbrcall = 0;
633 branchruledata->totalmultaggrcands = 0;
634 branchruledata->totallpcands = 0;
635 SCIP_CALL( SCIPallocBlockMemoryArray(scip, &branchruledata->ratioggain, branchruledata->size) );
636 BMSclearMemoryArray(branchruledata->ratioggain, branchruledata->size);
637 SCIP_CALL( SCIPcreateClock(scip, &branchruledata->clckstrongbr) );
638 SCIP_CALL( SCIPcreateClock(scip, &branchruledata->clckmultaggrbr) );
639 )
640 return SCIP_OKAY;
641}
642
643/** deinitialization method of branching rule (called before transformed problem is freed) */
644static
646{ /*lint --e{715}*/
647 SCIP_BRANCHRULEDATA* branchruledata;
648 SCIPstatistic(int j = 0);
649
650 /* initialize branching rule data */
651 branchruledata = SCIPbranchruleGetData(branchrule);
652 assert(branchruledata != NULL);
653 assert((branchruledata->skipdown != NULL) == (branchruledata->skipup != NULL));
654
655 /* print statistics */
658 SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL, "Multi-aggregated branching stats : \n");
659 SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL, " nmultaggrvars : %d (last run)\n",
660 branchruledata->nmultaggrvars);
661 SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL, " firstmultaggrbranchdepth : %d (in run %d)\n",
662 branchruledata->firstmultaggrdepth,
663 branchruledata->rundepth);
664 SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL, " nmultaggrbranch : %d (tot %d)\n",
665 branchruledata->nmultaggrbranch, branchruledata->nmultaggrbranch + branchruledata->nfracbranch);
666 SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL, " nmultaggrcutoff : %d\n", branchruledata->nmultaggrcutoff);
667 SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL, " nmultaggrconsadd : %d\n", branchruledata->nmultaggrconsadd);
668 SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL, " nfractcutoff : %d\n", branchruledata->nfractcutoff);
669 SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL, " nfractconsadd : %d\n", branchruledata->nfractconsadd);
670 SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL, " nEscore : %d\n", branchruledata->nEscore);
671
672 SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL, " Branching Time : \n");
673 SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL, " nstrongbrcall : %d\n", branchruledata->nstrongbrcall);
674 SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL, " totalstrongbrtime : %g\n",
675 SCIPgetClockTime(scip, branchruledata->clckstrongbr));
676 SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL, " totallpcands : %d\n", branchruledata->totallpcands);
677
678 if( branchruledata->totallpcands != 0 )
679 {
680 SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL, " averagetimestrongbr : %g\n",
681 SCIPgetClockTime(scip, branchruledata->clckstrongbr) / branchruledata->totallpcands);
682 }
683 else
684 {
685 SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL, " averagetimestrongbr : %s\n", "--");
686 }
687
688 SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL, " nmultaggrbrcall : %d\n", branchruledata->nmultaggrbrcall);
689 SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL, " totalmultaggrbrtime : %g\n",
690 SCIPgetClockTime(scip, branchruledata->clckmultaggrbr));
691 SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL, " totalmultaggrcands : %d\n", branchruledata->totalmultaggrcands);
692
693 if( branchruledata->totalmultaggrcands != 0 )
694 {
695 SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL, " averagetimemultaggrbr : %g\n",
696 SCIPgetClockTime(scip, branchruledata->clckmultaggrbr) / branchruledata->totalmultaggrcands);
697 }
698 else
699 {
700 SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL, " averagetimemultaggrbr : %s\n", "--");
701 }
702
703 SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL, " Ratioggain :\n");
704 if( branchruledata->nmultaggrbranch != 0 )
705 {
706 for( j = 0; j < branchruledata->nmultaggrbranch; j++ )
707 {
708 branchruledata->ameanratio += branchruledata->ratioggain[j];
709 SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL, " %g", branchruledata->ratioggain[j]);
710 }
711
713 branchruledata->ameanratio = branchruledata->ameanratio / branchruledata->nmultaggrbranch;
715 SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL, " ameanratio : %4.2f\n", branchruledata->ameanratio);
716 }
717 else
718 {
719 SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL, " ameanratio : %s\n", "--");
720 }
721
723
724 /* free arrays */
725 SCIPfreeBlockMemoryArrayNull(scip, &branchruledata->ratioggain, branchruledata->size);
726 SCIP_CALL( SCIPfreeClock(scip, &branchruledata->clckstrongbr) );
727 SCIP_CALL( SCIPfreeClock(scip, &branchruledata->clckmultaggrbr) );
728 )
729 if( branchruledata->skipdown != NULL )
730 {
731 SCIPfreeBlockMemoryArray(scip, &branchruledata->skipup, branchruledata->skipsize);
732 SCIPfreeBlockMemoryArray(scip, &branchruledata->skipdown, branchruledata->skipsize);
733 branchruledata->skipdown = NULL;
734 branchruledata->skipup = NULL;
735 branchruledata->skipsize = 0;
736 }
737 return SCIP_OKAY;
738}
739
740/** branching execution method for fractional LP solutions */
741static
743{ /*lint --e{715}*/
744 SCIP_BRANCHRULEDATA* branchruledata;
747 SCIP_Real* lpcandssol;
748 SCIP_Real* lpcandsfrac;
749 SCIP_Real* tmplpcandssol;
750 SCIP_Real* tmplpcandsfrac;
753 SCIP_Real bestup;
754 SCIP_Real bestdown;
755 SCIP_Real bestscore;
756 SCIP_Real provedbound;
757 SCIP_Real estimatedown = 0.0;
758 SCIP_Real estimateup = 0.0;
759 SCIP_Bool bestdownvalid;
760 SCIP_Bool bestupvalid;
761 SCIP_Longint oldreevalage;
762 int bestcandpos;
763 int nlpcands;
764 int npriolpcands;
766 SCIP_Real lpobjval;
767 SCIP_Bool reoptimize;
768 )
769
772 assert(scip != NULL);
773 assert(result != NULL);
774
775 SCIPdebugMsg(scip, "Execlp method of mult-aggreg branching\n ");
777
778 /* get branching rule data */
779 branchruledata = SCIPbranchruleGetData(branchrule);
780 assert(branchruledata != NULL);
781
782 SCIP_CALL( SCIPgetLongintParam(scip, "branching/fullstrong/reevalage", &oldreevalage) );
783 SCIP_CALL( SCIPsetLongintParam(scip, "branching/fullstrong/reevalage", branchruledata->reevalage) );
784
785 /* get the lpobjval and the number of multi aggregated variables of the problem as a statistic counter */
788 lpobjval = SCIPgetLPObjval(scip);
789
790 if( SCIPgetNRuns(scip) != branchruledata->nrun )
791 {
793 int nfixvars;
794 int i;
795
796 branchruledata->nmultaggrvars = 0;
799
800 if( nfixvars != 0 )
801 {
802 for( i = 0; i < nfixvars; i++ )
803 {
806 {
807 branchruledata->nmultaggrvars += 1;
808 }
809 }
810 }
811 branchruledata->nrun = SCIPgetNRuns(scip);
812 }
813 )
814
815 /* get all branching candidates */
817 assert(nlpcands > 0);
818 assert(npriolpcands > 0);
819
820 /* copy LP branching candidates and solution values, because they will be updated w.r.t. the strong branching LP
821 * solution
822 */
826
827 if( branchruledata->skipdown == NULL )
828 {
829 assert(branchruledata->skipup == NULL);
830
831 branchruledata->skipsize = SCIPgetNVars(scip);
832 SCIP_CALL( SCIPallocBlockMemoryArray(scip, &branchruledata->skipdown, branchruledata->skipsize) );
833 SCIP_CALL( SCIPallocBlockMemoryArray(scip, &branchruledata->skipup, branchruledata->skipsize) );
834 BMSclearMemoryArray(branchruledata->skipdown, branchruledata->skipsize);
835 BMSclearMemoryArray(branchruledata->skipup, branchruledata->skipsize);
836 }
837
838 /* start the clock to get the time spent inside the function */
840 SCIP_CALL( SCIPstartClock(scip, branchruledata->clckstrongbr) );
841 );
842
843 /* compute strong branching among the array of fractional variables in order to get the best one */
845 branchruledata->skipup, nlpcands, npriolpcands, nlpcands, &branchruledata->lastcand,
846 branchruledata->maxproprounds, branchruledata->probingbounds, TRUE,
848
850 SCIP_CALL( SCIPstopClock(scip, branchruledata->clckstrongbr) );
851 branchruledata->totallpcands += SCIPgetNLPBranchCands(scip);
852 branchruledata->nstrongbrcall += 1;
853 )
854
856 {
858 SCIP_Real bestsol = lpcandssol[bestcandpos];
860
862 SCIP_Real fdowngain = 0.0;
863 SCIP_Real fupgain = 0.0;
864
865 /* reoptimize is set to true if strong branching on fractional variables did not explicitly evaluate the objective
866 * values of the probing child nodes and thus we do not have updated information
867 */
868 if( SCIPisLT(scip, SCIPgetVarStrongbranchLPAge(scip, bestcand), branchruledata->reevalage)
869 || branchruledata->maxproprounds != 0 )
871
872 /* store values needed for the ratioggain statistic */
873 if( !reoptimize )
874 {
875 SCIP_Real fdown;
876 SCIP_Real fup;
877
878 fdown = MAX(bestdown, lpobjval);
879 fup = MAX(bestup, lpobjval);
880 fdowngain = fdown - lpobjval;
881 fupgain = fup - lpobjval;
882 }
883
884 /* start and then stop the clock to get the time spent inside the function */
885 SCIP_CALL( SCIPstartClock(scip, branchruledata->clckmultaggrbr) );
886 )
887
888 /* compute strong branching among the multi-aggregated variables and the best fractional variable */
892#else
895#endif
897 SCIP_CALL( SCIPstopClock(scip, branchruledata->clckmultaggrbr) );
898 branchruledata->nmultaggrbrcall += 1;
899 )
900
901 if( *result != SCIP_CUTOFF && *result != SCIP_CONSADDED )
902 {
904 if( !(branchruledata->noupdate) )
905 {
906 if( SCIPisEQ(scip, bestmultaggrscore, bestscore) )
907 branchruledata->nEscore += 1;
908 }
909 )
910
911 assert(bestcand != NULL);
912 SCIPdebugMsg(scip, "BRANCHING MODE:\n");
913
914 /* perform branching on the best found candidate */
916 {
919
921 if( !(branchruledata->noupdate) )
922 {
923 branchruledata->nmultaggrbranch += 1;
924
925 if( !reoptimize )
926 {
927 SCIP_Real gfractbranch;
928 SCIP_Real gmultaggrbranch;
929 SCIP_Real downgain;
930 SCIP_Real upgain;
931 SCIP_Real down;
932 SCIP_Real up;
933 int nmultaggrbranch;
934
935 down = MAX(bestdown, lpobjval);
936 up = MAX(bestup, lpobjval);
937 downgain = down - lpobjval;
938 upgain = up - lpobjval;
939
940 SCIP_CALL( ensureArraySize(scip, branchruledata) );
941
942 gfractbranch= sqrt(MAX(fdowngain,1e-06) * MAX(fupgain,1e-06));
943 gmultaggrbranch = sqrt(MAX(downgain,1e-06) * MAX(upgain,1e-06));
944
945 nmultaggrbranch = branchruledata->nmultaggrbranch;
946
947 if( gmultaggrbranch == 0.0 )
948 {
949 branchruledata->ratioggain[nmultaggrbranch - 1] = 1;
950 }
951 else
952 {
953 branchruledata->ratioggain[nmultaggrbranch - 1] = gfractbranch / gmultaggrbranch;
954 }
955 }
956 }
957 )
958
959 /* create the multi-aggregated constraints rounded up and down */
964
969
970 /* create the child nodes */
972 SCIPdebugMsg(scip, " down node: lowerbound %f estimate %f\n", SCIPnodeGetLowerbound(downchild), SCIPnodeGetEstimate(downchild));
973
975 SCIPdebugMsg(scip, " up node: lowerbound %f estimate %f\n", SCIPnodeGetLowerbound(upchild), SCIPnodeGetEstimate(upchild));
976
978 assert(upchild != NULL);
979
982
983#ifdef PRINTNODECONS
984 SCIPdebugMsg(scip, "branching at node %lld\n", SCIPnodeGetNumber(SCIPgetCurrentNode(scip)));
985
986 SCIPdebugMsg(scip, "created child node %lld with constraint:\n", SCIPnodeGetNumber(downchild));
988 SCIPinfoMessage(scip, NULL, "\n");
989
990 SCIPdebugMsg(scip, "created child node %lld with constraint:\n", SCIPnodeGetNumber(upchild));
992 SCIPinfoMessage(scip, NULL, "\n");
993#endif
994
995 /* relase constraints */
998
999 SCIPdebugMsg(scip, "BRANCHED on multi-aggregated variable <%s>\n", SCIPvarGetName(bestcand));
1000
1002 }
1003 else
1004 {
1006 if( !(branchruledata->noupdate) )
1007 branchruledata->nfracbranch += 1
1008 );
1009
1012
1014
1015 assert(downchild != NULL);
1016 assert(upchild != NULL);
1017
1018 SCIPdebugMsg(scip, "BRANCHED on fractional variable <%s>\n", SCIPvarGetName(bestcand));
1019
1021 }
1022
1023 /* update the lower bounds in the children; we must not do this if columns are missing in the LP
1024 * (e.g., because we are doing branch-and-price) or the problem should be solved exactly
1025 */
1027 {
1030 }
1031 SCIPdebugMsg(scip, " -> down child's lowerbound: %g\n", SCIPnodeGetLowerbound(downchild));
1032 SCIPdebugMsg(scip, " -> up child's lowerbound: %g\n", SCIPnodeGetLowerbound(upchild));
1033 }
1034 }
1035 else
1036 {
1037 SCIPdebugMsg(scip, "strong branching breaks\n" );
1038
1040 if( *result == SCIP_CUTOFF )
1041 {
1042 branchruledata->nfractcutoff += 1;
1043 }
1044 else
1045 {
1046 branchruledata->nfractconsadd += 1;
1047 }
1048 )
1049 }
1050
1054
1055 SCIP_CALL( SCIPsetLongintParam(scip, "branching/fullstrong/reevalage", oldreevalage) );
1056
1057 return SCIP_OKAY;
1058}
1059
1060/*
1061 * branching rule specific interface methods
1062 */
1063
1064/** creates the multi-aggregated branching rule and includes it in SCIP */
1066 SCIP* scip /**< SCIP data structure */
1067 )
1068{
1069 SCIP_BRANCHRULEDATA* branchruledata;
1071
1072 /* create multaggr branching rule data */
1073 SCIP_CALL( SCIPallocBlockMemory(scip, &branchruledata) );
1074 branchruledata->lastcand = 0;
1075 branchruledata->skipsize = 0;
1076 branchruledata->skipup = NULL;
1077 branchruledata->skipdown = NULL;
1078 SCIPstatistic(branchruledata->ratioggain = NULL);
1079
1080 /* include branching rule */
1082 BRANCHRULE_MAXDEPTH, BRANCHRULE_MAXBOUNDDIST, branchruledata) );
1083
1085
1086 /* set non fundamental callbacks via setter functions */
1092
1093 /* multi-aggregated branching rule parameters */
1095 "branching/multaggr/reevalage",
1096 "number of intermediate LPs solved to trigger reevaluation of strong branching value for a variable that was already evaluated at the current node",
1097 &branchruledata->reevalage, TRUE, DEFAULT_REEVALAGE, 0LL, SCIP_LONGINT_MAX, NULL, NULL) );
1099 "branching/multaggr/maxproprounds",
1100 "maximum number of propagation rounds to be performed during multaggr branching before solving the LP (-1: no limit, -2: parameter settings)",
1101 &branchruledata->maxproprounds, TRUE, DEFAULT_MAXPROPROUNDS, -2, INT_MAX, NULL, NULL) );
1103 "branching/multaggr/probingbounds",
1104 "should valid bounds be identified in a probing-like fashion during multaggr branching (only with propagation)?",
1105 &branchruledata->probingbounds, TRUE, DEFAULT_PROBINGBOUNDS, NULL, NULL) );
1106
1107 return SCIP_OKAY;
1108}
full strong LP branching rule
#define BRANCHRULE_DESC
#define BRANCHRULE_PRIORITY
#define DEFAULT_PROBINGBOUNDS
#define DEFAULT_REEVALAGE
static SCIP_RETCODE selectVarMultAggrBranching(SCIP *scip, SCIP_VAR **bestcand, SCIP_Real *bestscore, SCIP_Real *bestsol, SCIP_Real *bestdown, SCIP_Real *bestup, SCIP_Bool *bestdownvalid, SCIP_Bool *bestupvalid, SCIP_Real *provedbound, SCIP_Real *estimatedown, SCIP_Real *estimateup, SCIP_RESULT *result)
#define BRANCHRULE_NAME
#define DEFAULT_MAXPROPROUNDS
#define BRANCHRULE_MAXDEPTH
#define BRANCHRULE_MAXBOUNDDIST
fullstrong branching on fractional and multi-aggregated variables
Constraint handler for linear constraints in their most general form, .
#define NULL
Definition def.h:267
#define SCIP_MAXTREEDEPTH
Definition def.h:316
#define MIN(x, y)
Definition def.h:243
#define TRUE
Definition def.h:93
#define FALSE
Definition def.h:94
#define MAX(x, y)
Definition def.h:239
#define SCIP_LONGINT_MAX
Definition def.h:159
#define SCIP_CALL(x)
Definition def.h:374
SCIP_RETCODE SCIPselectVarStrongBranching(SCIP *scip, SCIP_VAR **lpcands, SCIP_Real *lpcandssol, SCIP_Real *lpcandsfrac, SCIP_Bool *skipdown, SCIP_Bool *skipup, int nlpcands, int npriolpcands, int ncomplete, int *start, int maxproprounds, SCIP_Bool probingbounds, SCIP_Bool forcestrongbranch, int *bestcand, SCIP_Real *bestdown, SCIP_Real *bestup, SCIP_Real *bestscore, SCIP_Bool *bestdownvalid, SCIP_Bool *bestupvalid, SCIP_Real *provedbound, SCIP_RESULT *result)
SCIP_RETCODE SCIPincludeBranchruleMultAggr(SCIP *scip)
SCIP_RETCODE SCIPcreateConsLinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
SCIP_Bool SCIPisExactSolve(SCIP *scip)
int SCIPgetNVars(SCIP *scip)
Definition scip_prob.c:1992
int SCIPgetNFixedVars(SCIP *scip)
Definition scip_prob.c:2309
SCIP_VAR ** SCIPgetFixedVars(SCIP *scip)
Definition scip_prob.c:2266
SCIP_RETCODE SCIPupdateNodeLowerbound(SCIP *scip, SCIP_NODE *node, SCIP_Real newbound)
Definition scip_prob.c:3757
SCIP_RETCODE SCIPaddConsNode(SCIP *scip, SCIP_NODE *node, SCIP_CONS *cons, SCIP_NODE *validnode)
Definition scip_prob.c:3323
void SCIPinfoMessage(SCIP *scip, FILE *file, const char *formatstr,...)
void SCIPverbMessage(SCIP *scip, SCIP_VERBLEVEL msgverblevel, FILE *file, const char *formatstr,...)
#define SCIPdebugMsg
SCIP_RETCODE SCIPaddLongintParam(SCIP *scip, const char *name, const char *desc, SCIP_Longint *valueptr, SCIP_Bool isadvanced, SCIP_Longint defaultvalue, SCIP_Longint minvalue, SCIP_Longint maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition scip_param.c:111
SCIP_RETCODE SCIPaddIntParam(SCIP *scip, const char *name, const char *desc, int *valueptr, SCIP_Bool isadvanced, int defaultvalue, int minvalue, int maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition scip_param.c:83
SCIP_RETCODE SCIPsetLongintParam(SCIP *scip, const char *name, SCIP_Longint value)
Definition scip_param.c:545
SCIP_RETCODE SCIPaddBoolParam(SCIP *scip, const char *name, const char *desc, SCIP_Bool *valueptr, SCIP_Bool isadvanced, SCIP_Bool defaultvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition scip_param.c:57
SCIP_RETCODE SCIPgetLongintParam(SCIP *scip, const char *name, SCIP_Longint *value)
Definition scip_param.c:288
SCIP_RETCODE SCIPsetBranchruleInit(SCIP *scip, SCIP_BRANCHRULE *branchrule,)
SCIP_BRANCHRULE * SCIPfindBranchrule(SCIP *scip, const char *name)
SCIP_RETCODE SCIPsetBranchruleExit(SCIP *scip, SCIP_BRANCHRULE *branchrule,)
SCIP_RETCODE SCIPincludeBranchruleBasic(SCIP *scip, SCIP_BRANCHRULE **branchruleptr, const char *name, const char *desc, int priority, int maxdepth, SCIP_Real maxbounddist, SCIP_BRANCHRULEDATA *branchruledata)
const char * SCIPbranchruleGetName(SCIP_BRANCHRULE *branchrule)
Definition branch.c:1971
SCIP_BRANCHRULEDATA * SCIPbranchruleGetData(SCIP_BRANCHRULE *branchrule)
Definition branch.c:1849
SCIP_RETCODE SCIPsetBranchruleCopy(SCIP *scip, SCIP_BRANCHRULE *branchrule,)
SCIP_RETCODE SCIPsetBranchruleExecLp(SCIP *scip, SCIP_BRANCHRULE *branchrule,)
void SCIPbranchruleSetData(SCIP_BRANCHRULE *branchrule, SCIP_BRANCHRULEDATA *branchruledata)
Definition branch.c:1859
SCIP_RETCODE SCIPsetBranchruleFree(SCIP *scip, SCIP_BRANCHRULE *branchrule,)
SCIP_RETCODE SCIPbranchVarVal(SCIP *scip, SCIP_VAR *var, SCIP_Real val, SCIP_NODE **downchild, SCIP_NODE **eqchild, SCIP_NODE **upchild)
SCIP_RETCODE SCIPgetLPBranchCands(SCIP *scip, SCIP_VAR ***lpcands, SCIP_Real **lpcandssol, SCIP_Real **lpcandsfrac, int *nlpcands, int *npriolpcands, int *nfracimplvars)
int SCIPgetNLPBranchCands(SCIP *scip)
SCIP_RETCODE SCIPcreateChild(SCIP *scip, SCIP_NODE **node, SCIP_Real nodeselprio, SCIP_Real estimate)
SCIP_Real SCIPgetBranchScore(SCIP *scip, SCIP_VAR *var, SCIP_Real downgain, SCIP_Real upgain)
SCIP_RETCODE SCIPprintCons(SCIP *scip, SCIP_CONS *cons, FILE *file)
Definition scip_cons.c:2537
const char * SCIPconsGetName(SCIP_CONS *cons)
Definition cons.c:8214
SCIP_RETCODE SCIPreleaseCons(SCIP *scip, SCIP_CONS **cons)
Definition scip_cons.c:1174
SCIP_LPSOLSTAT SCIPgetLPSolstat(SCIP *scip)
Definition scip_lp.c:168
SCIP_Bool SCIPallColsInLP(SCIP *scip)
Definition scip_lp.c:649
SCIP_Real SCIPgetLPObjval(SCIP *scip)
Definition scip_lp.c:247
#define SCIPfreeBlockMemoryArray(scip, ptr, num)
Definition scip_mem.h:110
int SCIPcalcMemGrowSize(SCIP *scip, int num)
Definition scip_mem.c:139
#define SCIPallocBufferArray(scip, ptr, num)
Definition scip_mem.h:124
#define SCIPfreeBufferArray(scip, ptr)
Definition scip_mem.h:136
#define SCIPduplicateBufferArray(scip, ptr, source, num)
Definition scip_mem.h:132
#define SCIPallocBlockMemoryArray(scip, ptr, num)
Definition scip_mem.h:93
#define SCIPreallocBlockMemoryArray(scip, ptr, oldnum, newnum)
Definition scip_mem.h:99
#define SCIPfreeBlockMemory(scip, ptr)
Definition scip_mem.h:108
#define SCIPfreeBlockMemoryArrayNull(scip, ptr, num)
Definition scip_mem.h:111
#define SCIPallocBlockMemory(scip, ptr)
Definition scip_mem.h:89
SCIP_Real SCIPnodeGetLowerbound(SCIP_NODE *node)
Definition tree.c:7510
SCIP_Longint SCIPnodeGetNumber(SCIP_NODE *node)
Definition tree.c:7490
SCIP_Real SCIPnodeGetEstimate(SCIP_NODE *node)
Definition tree.c:7520
SCIP_RETCODE SCIPbacktrackProbing(SCIP *scip, int probingdepth)
SCIP_RETCODE SCIPstartProbing(SCIP *scip)
SCIP_RETCODE SCIPnewProbingNode(SCIP *scip)
SCIP_RETCODE SCIPsolveProbingLP(SCIP *scip, int itlim, SCIP_Bool *lperror, SCIP_Bool *cutoff)
int SCIPgetNRuns(SCIP *scip)
SCIP_Real SCIPgetCutoffbound(SCIP *scip)
SCIP_RETCODE SCIPcreateClock(SCIP *scip, SCIP_CLOCK **clck)
Definition scip_timing.c:76
SCIP_RETCODE SCIPstopClock(SCIP *scip, SCIP_CLOCK *clck)
SCIP_RETCODE SCIPfreeClock(SCIP *scip, SCIP_CLOCK **clck)
SCIP_Real SCIPgetClockTime(SCIP *scip, SCIP_CLOCK *clck)
SCIP_RETCODE SCIPstartClock(SCIP *scip, SCIP_CLOCK *clck)
SCIP_Real SCIPinfinity(SCIP *scip)
SCIP_Bool SCIPisGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
SCIP_Real SCIPfeasCeil(SCIP *scip, SCIP_Real val)
SCIP_Real SCIPfeasFloor(SCIP *scip, SCIP_Real val)
SCIP_Bool SCIPisFeasIntegral(SCIP *scip, SCIP_Real val)
SCIP_Bool SCIPisLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
int SCIPgetDepth(SCIP *scip)
Definition scip_tree.c:670
SCIP_NODE * SCIPgetCurrentNode(SCIP *scip)
Definition scip_tree.c:91
SCIP_Real SCIPvarGetMultaggrConstant(SCIP_VAR *var)
Definition var.c:17882
SCIP_VARSTATUS SCIPvarGetStatus(SCIP_VAR *var)
Definition var.c:17538
SCIP_VARTYPE SCIPvarGetType(SCIP_VAR *var)
Definition var.c:17584
const char * SCIPvarGetName(SCIP_VAR *var)
Definition var.c:17419
SCIP_Longint SCIPgetVarStrongbranchLPAge(SCIP *scip, SCIP_VAR *var)
Definition scip_var.c:4196
SCIP_Real SCIPvarGetLPSol(SCIP_VAR *var)
Definition var.c:18452
SCIP_VAR ** SCIPvarGetMultaggrVars(SCIP_VAR *var)
Definition var.c:17858
int SCIPvarGetMultaggrNVars(SCIP_VAR *var)
Definition var.c:17846
SCIP_Real * SCIPvarGetMultaggrScalars(SCIP_VAR *var)
Definition var.c:17870
return SCIP_OKAY
static SCIP_RETCODE reoptimize(SCIP *scip, SCIP_HEUR *heur, SCIP_SOL *sol, BLOCKPROBLEM **blockproblem, int nblocks, SCIP_Bool limits, SCIP_SOL **newsol, SCIP_Bool *success)
Definition heur_dps.c:1504
SCIP_Bool lperror
SCIPendProbing(scip))
SCIP_Real * lpcandssol
int nlpcands
SCIP_VAR ** lpcands
assert(minobj< SCIPgetCutoffbound(scip))
int bestcand
SCIP_Real * lpcandsfrac
memory allocation routines
#define BMSclearMemoryArray(ptr, num)
Definition memory.h:130
public methods for branching rules
public methods for managing constraints
public methods for message output
#define SCIPstatistic(x)
public methods for branch and bound tree
public methods for problem variables
public methods for branching rule plugins and branching
public methods for constraint handler plugins and constraints
general public methods
public methods for the LP relaxation, rows and columns
public methods for memory management
public methods for message handling
public methods for numerical tolerances
public methods for SCIP parameter handling
public methods for global and local (sub)problems
public methods for the probing mode
public methods for querying solving statistics
public methods for timing
public methods for the branch-and-bound tree
public methods for SCIP variables
SCIP_Real SCIPsetFeasCeil(SCIP_SET *set, SCIP_Real val)
Definition set.c:6763
SCIP_Real SCIPsetFeasFloor(SCIP_SET *set, SCIP_Real val)
Definition set.c:6752
internal methods for global SCIP settings
SCIP main data structure.
#define SCIP_DECL_BRANCHEXECLP(x)
#define SCIP_DECL_BRANCHINIT(x)
Definition type_branch.h:83
#define SCIP_DECL_BRANCHCOPY(x)
Definition type_branch.h:67
#define SCIP_DECL_BRANCHEXIT(x)
Definition type_branch.h:91
#define SCIP_DECL_BRANCHFREE(x)
Definition type_branch.h:75
struct SCIP_BranchruleData SCIP_BRANCHRULEDATA
Definition type_branch.h:57
enum SCIP_LPSolStat SCIP_LPSOLSTAT
Definition type_lp.h:51
@ SCIP_LPSOLSTAT_NOTSOLVED
Definition type_lp.h:42
@ SCIP_LPSOLSTAT_TIMELIMIT
Definition type_lp.h:48
@ SCIP_LPSOLSTAT_UNBOUNDEDRAY
Definition type_lp.h:45
@ SCIP_LPSOLSTAT_INFEASIBLE
Definition type_lp.h:44
@ SCIP_LPSOLSTAT_OBJLIMIT
Definition type_lp.h:46
@ SCIP_LPSOLSTAT_ITERLIMIT
Definition type_lp.h:47
@ SCIP_VERBLEVEL_NORMAL
@ SCIP_DIDNOTRUN
Definition type_result.h:42
@ SCIP_CUTOFF
Definition type_result.h:48
@ SCIP_REDUCEDDOM
Definition type_result.h:51
@ SCIP_CONSADDED
Definition type_result.h:52
@ SCIP_BRANCHED
Definition type_result.h:54
enum SCIP_Result SCIP_RESULT
Definition type_result.h:61
enum SCIP_Retcode SCIP_RETCODE
@ SCIP_VARTYPE_INTEGER
Definition type_var.h:63
@ SCIP_VARTYPE_BINARY
Definition type_var.h:62
@ SCIP_VARSTATUS_MULTAGGR
Definition type_var.h:54
SCIP_Real SCIPvarGetPseudocost(SCIP_VAR *var, SCIP_STAT *stat, SCIP_Real solvaldelta)
Definition var.c:14477
internal methods for problem variables