datastructures

Collection of standard data structures
for GAP

0.3.1

26 August 2024

Markus Pfeiffer
Max Horn
Christopher Jefferson

Steve Linton

datastructures

Markus Pfeiffer
Email: markus.pfeiffer@st-andrews.ac.uk
Homepage: http://www.morphism.de/ markusp
Address: School of Computer Science

University of St Andrews

Jack Cole Building, North Haugh

St Andrews, Fife, KY16 9SX

United Kingdom

Max Horn
Email: mhorn@rptu.de
Homepage: https://www.quendi.de/math
Address: Fachbereich Mathematik
RPTU Kaiserslautern-Landau
Gottlieb-Daimler-Strafle 48
67663 Kaiserslautern
Germany

Christopher Jefferson
Email: caj21@st-andrews.ac.uk
Homepage: http://caj.host.cs.st-andrews.ac.uk/

Address: School of Computer Science
University of St Andrews
Jack Cole Building, North Haugh
St Andrews, Fife, KY16 9SX
United Kingdom

Steve Linton
Email: steve.linton@st-andrews.ac.uk
Homepage: http://sl4.host.cs.st-andrews.ac.uk/

Address: School of Computer Science
University of St Andrews
Jack Cole Building, North Haugh
St Andrews, Fife, KY16 9SX
United Kingdom

mailto://markus.pfeiffer@st-andrews.ac.uk
http://www.morphism.de/~markusp
mailto://mhorn@rptu.de
https://www.quendi.de/math
mailto://caj21@st-andrews.ac.uk
http://caj.host.cs.st-andrews.ac.uk/
mailto://steve.linton@st-andrews.ac.uk
http://sl4.host.cs.st-andrews.ac.uk/

datastructures 2

Copyright

© 2015-18 by Chris Jefferson, Steve Linton, Markus Pfeiffer, Max Horn, Reimer Behrends and others

datastructures package is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

Acknowledgements

We appreciate very much all past and future comments, suggestions and contributions to this package and its
documentation provided by GAP users and developers.

https://www.fsf.org/licenses/gpl.html

Contents

1 Introduction

1.1 Purpose and goals of this package
1.2 Overviewoverthismanual
1.3 Feedback e

2 Installation

2.1 Buildingthe Kernel Module
2.2 Building the Documentation
3 Heaps
3.1 Introduction e e
32 APL . . e
33 BinaryHeaps e
34 PairingHeaps L
3.5 Declarations e e
3.6 Implementation e e e e e

4 Queues and Deques
4.1 APL . o
4.2 Deques implemented using plain lists L.

5 Union-Find
5.1 Introduction e e
52 APL . . e

6 Hash Functions

6.1 Introduction e e e e

6.2 Hash Functions for Basic Types

6.3 Hash Functions for Permutation Groups
7 Hashmaps

7.1 APL . o e
8 Hashsets

8.1 APL . . . e

WD e

()@ =)

O O O O 0 I3

10

11

14
14
14

16
16
16
16

18
18

21

datastructures
9 Memoisation
9.1 MemoisationwithHashMap

10 Ordered Set Datastructures
10.1 Usage o o o e e e e e
10.2 APL . . . e e
10.3 Defaultmethods

11 Slices
11.1 APL . . o

12 Stacks
12.1 APL . . e

References

Index

23
23

24
24
25
27

29
29

31
31

33

34

Chapter 1

Introduction

1.1 Purpose and goals of this package
The datastructures package for GAP has two main goals:
* Provide abstract interfaces for commonly used datastructures
* Provide good low-level implementations for these datastructures

datastructures requires building of a kernel module for GAP to function, please refer to Chapter 2
for details; the package is not automatically loaded by GAP after it has been installed. You must load
the package with LoadPackage ("datastructures") ; before its functions become available.

1.2 Overview over this manual

Chapter 2 describes the installation of this package. The remaining chapters describe the available
datastructures in this package with a definition of the supported API and details about provided imple-
mentations.

1.3 Feedback

For bug reports, feature requests and suggestions, please use our issue tracker.

https://github.com/gap-packages/datastructures/issues

Chapter 2

Installation

datastructures does not work without compiling its kernel module, and is not loaded by GAP by
default. To load the package run LoadPackage ("datastructures") ; at the GAP prompt.

2.1 Building the Kernel Module

To build the kernel module, you will need
* a C compiler, e.g. GCC or Clang
* GNU Make

To install a released version of this package, extract the package’s archive file into GAP’s pkg folder.
To install the current development version of this package, obtain the most recent code from
GITHUB

git clone https://github.com/gap-packages/datastructures

To build the kernel module then run the following commands in the package’s directory.

./configure
make

2.2 Building the Documentation

To build the package documentation, run the following command in the package’s directory

gap makedoc.g

Chapter 3

Heaps

3.1 Introduction

A heap is a tree datastructure such that for any child C of a node N it holds that C < N, according to
some ordering relation <.

The fundamental operations for heaps are Construction, Pushing data onto the heap, Peeking at
the topmost item, and Popping the topmost item off of the heap.

For a good heap implementation these basic operations should not exceed O(logn) in runtime
where n is the number of items on the heap.

We currently provide two types of heaps: Binary Heaps 3.3 and Pairing Heaps 3.4.

The following code shows how to use a binary heap.
Example

gap> h := BinaryHeap();
<binary heap with O entries>
gap> Push(h, 5);

gap> Push(h, -10);

gap> Peek(h);

5

gap> Pop(h);

5

gap> Peek(h);

-10

The following code shows how to use a pairing heap.
Example
gap> h := PairingHeap({x,y} -> x.rank > y.rank);
<pairing heap with O entries>

gap> Push(h, rec(rank :=5));
gap> Push(h, rec(rank :=7));
gap> Push(h, rec(rank := -15));
gap> h;

<pairing heap with 3 entries>
gap> Peek(h);

rec(rank := -15)
gap> Pop(h);
rec(rank := -15)

datastructures 8

3.2 API

For the purposes of the datastructures, we provide a category IsHeap (3.2.1) . Every implementation
of a heap in the category IsHeap (3.2.1) must follow the API described in this section.

3.2.1 IsHeap (for IsObject)

> IsHeap(arg) (filter)
Returns: true or false
The category of heaps. Every object in this category promises to support the API described in this
section.

3.2.2 Heap
> Heap (arg) (function)
Wrapper function around constructors

3.2.3 NewHeap (for IsHeap, IsObject, IsObject)

> NewHeap([filter, func, data]) (constructor)
Returns: a heap
Construct a new heap

3.2.4 Push (for IsHeap, IsObject)
> Push(heap, object) (operation)
Puts the object object a new object onto heap.

3.2.5 Peek (for IsHeap)

> Peek(heap) (operation)

Inspect the item at the top of heap.

3.2.6 Pop (for IsHeap)

> POp (heap) (operation)
Returns: an object
Remove the top item from heap and return it.

3.2.7 Merge (for IsHeap, IsHeap)

> Merge(heapl, heap2) (operation)

Merge two heaps (of the same type)
Heaps also support IsEmpty (Reference: ISEmpty) and Size (Reference: Size)

datastructures 9

3.3 Binary Heaps

A binary heap employs a binary tree as its underlying tree datastructure. The implemenataion of

binary heaps in datastructures stores this tree in a flat array which makes it a very good and fast

default choice for general purpose use. In particular, even though other heap implementations have

better theoretical runtime bounds, well-tuned binary heaps outperform them in many applications.
For some reference see http://stackoverflow.com/questions/6531543

3.3.1 BinaryHeap

> BinaryHeap([isLess[, data]]) (function)
Returns: A binary heap
Constructor for binary heaps. The optional argument isLess must be a binary function that
performs comparison between two elements on the heap, and returns true if the first argument is
less than the second, and false otherwise. Using the optional argument data the user can give a
collection of initial values that are pushed on the stack after construction.

3.4 Pairing Heaps

A pairing heap is a heap datastructure with a very simple implementation in terms of GAP lists. Push
and Peek have O(1) complexity, and Pop has an amortized amortised O(log n), where 7 is the number
of items on the heap.

For a reference see [FSST86].

3.4.1 PairingHeap

> PairingHeap([isLess[, datall) (function)
Returns: A pairing heap
Constructor for pairing heaps. The optional argument isLess must be a binary function that
performs comparison between two elements on the heap, and returns true if the first argument is
less than the second, and false otherwise. Using the optional argument data the user can give a
collection of initial values that are pushed on the stack after construction.

3.5 Declarations

3.5.1 IsBinaryHeapFlatRep (for IsHeap and IsPositionalObjectRep)

> IsBinaryHeapFlatRep(arg) (filter)
Returns: true or false
3.6 Implementation

3.6.1 IsPairingHeapFlatRep (for IsHeap and IsPositionalObjectRep)

> IsPairingHeapFlatRep(arg) (filter)
Returns: true or false

http://stackoverflow.com/questions/6531543

Chapter 4

Queues and Deques

41 API

4.1.1 IsQueue (for IsObject)

> IsQueue(arg)
Returns: true or false
The category of queues.

4.1.2 IsDeque (for IsObject)

> IsDeque(arg)
Returns: true or false
The category of deques.

4.1.3 PushBack (for IsDeque, IsObject)

> PushBack(deque, object)

Add object to the back of deque.

4.1.4 PushFront (for IsDeque, IsObject)

> PushFront(deque, object)

Add object to the front of deque.

4.1.5 PopBack (for IsDeque)

> PopBack(deque)
Returns: object

Remove an element from the back of deque and return it.

10

(filter)

(filter)

(operation)

(operation)

(operation)

datastructures

4.1.6 PopFront (for IsDeque)

> PopFront (deque)
Returns: object

Remove an element from the front of deque and return it.

For queues, this is just an alias for PushBack

4.1.7 Enqueue (for IsQueue, IsObject)

> Enqueue(queue, object)

Add object to queue.

4.1.8 Dequeue (for IsQueue, IsObject)

> Dequeue (queue)
Returns: object
Remove an object from the front of queue and return it.

4.1.9 Capacity (for IsQueue)
> Capacity(arg)

Allocated storage capacity of queue.

4.1.10 Capacity (for IsDeque)

> Capacity(arg)
Allocated storage capacity of deque.

4.1.11 Length (for IsQueue)

> Length(arg)

Number of elements in queue.

4.1.12 Length (for IsDeque)

> Length(arg)

Number of elements in deque.

4.2 Deques implemented using plain lists

11

(operation)

(operation)

(operation)

(attribute)

(attribute)

(attribute)

(attribute)

datastructures implements deques using a circular buffer stored in a GAP a plain list, wrapped in a

positional object ((Reference: Positional Objects)).

The five positions in such a deque Q have the following purpose

datastructures 12

Q! [1] - head, the index in Q! [5] of the first element in the deque

Q! [2] - tail, the index in Q! [5] of the last element in the deque

* Q! [3] - capacity, the allocated capacity in the deque

Q! [4] - factor by which storage is increased if capacity is exceeded

Q! [5] - GAP plain list with storage for capacity many entries

Global constants QHEAD, QTAIL, QCAPACITY, QFACTOR, and QDATA are bound to reflect the above.

When a push fills the deque, its capacity is resized by a factor of QFACTOR using PlistDequeEx-
pand. A new empty plist is allocated and all current entries of the deque are copied into the new plist
with the head entry at index 1.

The deque is empty if and only if head = tail and the entry that head and tail point to in the storage
list is unbound.

4.2.1 PlistDeque

> PlistDeque([capacity[, factorl]) (function)
Returns: a deque
Constructor for plist based deques. The optional argument capacity must be a positive integer
and is the capacity of the created deque, and the optional argument factor must be a rational number
greater than one which is the factor by which the storage of the deque is increased if it runs out of
capacity when an object is put on the queue.

4.2.2 PlistDequePushFront

> PlistDequePushFront(deque, object) (function)

Push object to the front of deque.

4.2.3 PlistDequePushBack

> PlistDequePushBack(deque, object) (function)

Push object to the back of deque.

4.2.4 PlistDequePopFront

> PlistDequePopFront (deque) (function)
Returns: object or fail
Pop object from the front of deque and return it. If deque is empty, returns fail.

4.2.5 PlistDequePopBack

> PlistDequePopBack(deque) (function)
Returns: object or fail
Pop object from the back of deque and return it. If deque is empty, returns fail.

datastructures 13

4.2.6 PlistDequePeekFront

> PlistDequePeekFront (deque) (function)
Returns: object or fail
Returns the object at the front deque without removing it. If deque is empty, returns fail.

4.2.7 PlistDequePeekBack

> PlistDequePeekBack(deque) (function)
Returns: object or fail
Returns the object at the back deque without removing it. If deque is empty, returns fail.

4.2.8 PlistDequeExpand

> PlistDequeExpand(deque) (function)

Helper function to expand the capacity of deque by the configured factor.

Queues are linear data structure that allow adding elements at the end of the queue, and removing
elements from the front. A deque is a double -ended queue; a linear data structure that allows access
to objects at both ends.

The API that objects that lie in IsQueue (4.1.1) and IsDeque (4.1.2) must implement the API set
out below.

datastructures provides

Chapter 5

Union-Find

5.1 Introduction

datastructures defines the interface for mutable data structures representing partitions of [1..n],
commonly known as union-find data structures. Key operations are Unite (5.2.5) which fuses two
parts of a partition and Representative (5.2.4) which returns a canonical representative of the part
containing a given point.

5.2 API

5.2.1 IsPartitionDS (for IsObject)

> IsPartitionDS(arg) (filter)
Returns: true or false
Category of datastructures representing partitions. Equality is identity and family is ignored.

5.2.2 PartitionDS (for IsPartitionDS, IsPosInt)

> PartitionDS(filter, n) (constructor)

Family containing all partition data structures Returns the trivial partition of the set [1..n].

5.2.3 PartitionDS (for IsPartitionDS, IsCyclotomicCollColl)

> PartitionDS(filter, partition) (constructor)

Returns the union find structure of partition.

5.2.4 Representative (for IsPartitionDS, IsPosInt)

> Representative(unionfind, k) (operation)
Returns: a positive integer
Returns a canonical representative of the part of the partition that k is contained in.

14

datastructures 15

5.2.5 Unite (for IsPartitionDS and IsMutable, IsPosInt, IsPosInt)

> Unite(unionfind, k1, k2) (operation)

Fuses the parts of the partition unionfind containing k1 and k2.

5.2.6 RootslteratorOfPartitionDS (for IsPartitionDS)

> RootsIteratorOfPartitionDS(unionfind) (operation)
Returns: an iterator
Returns an iterator that runs through canonical representatives of parts of the partition
unionfind.

5.2.7 NumberParts (for IsPartitionDS)

> NumberParts(unionfind) (attribute)
Returns: a positive integer
Returns the number of parts of the partition unionfind.

5.2.8 SizeUnderlyingSetDS (for IsPartitionDS)

> SizeUnderlyingSetDS(unionfind) (attribute)
Returns: a positive integer
Returns the size of the underlying set of the partition unionfind.

5.2.9 PartsOfPartitionDS (for IsPartitionDS)

> PartsOfPartitionDS(unionfind) (attribute)
Returns: a list of lists
Returns the partition unionfind as a list of lists.

Chapter 6

Hash Functions

6.1 Introduction

A hash function in datastructures is a function H which maps a value X to a small integer (where a
small integer is an integer in the range [-2°28..2728-1] on a 32-bit system, and [-2°60. .2~60-1]
on a 64-bit system), under the requirement that if X =Y, then H(X) = H(Y).

A variety of hash functions is provided by datastructures, with different behaviours. A bad
choice of hash function can lead to serious performance problems.

datastructures does not guarantee consistency of hash values across release or GAP sessions.

6.2 Hash Functions for Basic Types

6.2.1 HashBasic

> HashBasic(obj...) (function)
Returns: a small integer
Hashes any values built inductively from

* built-in types, namely integers, booleans, permutations, transformations, partial permutations,
and

 constructors for lists and records.

This function is variadic, treating more than one argument as equivalent to a list containing the
arguments, that is HashBasic(x,y,z) = HashBasic([x,y,z]).
6.3 Hash Functions for Permutation Groups

datastructures provides two hash functions for permutation groups; Hash_PermGroup_Fast (6.3.1)
is the faster one, with higher likelihood of collisions and Hash_PermGroup_Complete (6.3.2) is
slower but provides a lower likelihood of collisions.

6.3.1 Hash_PermGroup_Fast

> Hash_PermGroup_Fast (group) (function)
Returns: a small integer

16

datastructures 17

Hash_PermGroup_Fast (6.3.1) is faster than Hash_PermGroup_Complete (6.3.2), but will return
the same value for groups with the same size, orbits and degree of transitivity.

6.3.2 Hash_PermGroup_Complete

> Hash_PermGroup_Complete (group) (function)
Returns: a small integer
Hash_PermGroup_Complete (6.3.2) is slower than Hash_PermGroup_Fast (6.3.1), but is ex-
tremely unlikely to return the same hash for two different groups.

Chapter 7

Hashmaps

A hash map stores key-value pairs and allows efficient lookup of keys by using a hash function.
datastructures currently provides a reference implementation of hashmaps using a hashtable
stored in a plain GAP list.

71 API

7.1.1 IsHashMap (for IsObject and IsFinite)

> IsHashMap(arg) (filter)
Returns: true or false
Category of hash maps

7.1.2 HashMap

> HashMap([values][,] [hashfunc[, eqfunc]][,] [capacityl]) (function)

Create a new hash map. The optional argument values must be a list of key-value pairs
which will be inserted into the new hashmap in order. The optional argument hashfunc must be
a hash-function, eqfunc must be a binary equality testing function that returns true if the two argu-
ments are considered equal, and false if they are not. Refer to Chapter 6 about the requirements for
hashfunctions and equality testers. The optional argument capacity determines the initial size of the
hashmap.

7.1.3 Keys (for IsHashMap)

> Keys (h) (operation)
Returns: a list
Returns the list of keys of the hashmap h.

7.1.4 Values (for IsHashMap)

> Values(h) (operation)
Returns: a list
Returns the set of values stored in the hashmap h.

18

datastructures

7.1.5 Keylterator (for IsHashMap)

> KeyIterator(h)
Returns: an iterator
Returns an iterator for the keys stored in the hashmap h.

7.1.6 Valuelterator (for IsHashMap)

> ValueIterator(h)
Returns: an iterator
Returns an iterator for the values stored in the hashmap h.

7.1.7 KeyValuelterator (for IsHashMap)

> KeyValuelIterator (h)
Returns: an iterator

Returns an iterator for key-value-pairs stored in the hashmap h.

7.1.8 \[\] (for IsHashMapRep, IsObject)

> \[\] (hashmap, object)

List-style access for hashmaps.

7.1.9 \[\]\:\= (for IsHashMapRep, IsObject, IsObject)

> \[\]J\:\=(hashmap, object, object)

List-style assignment for hashmaps.

7.1.10 \in (for IsObject, IsHashMapRep)

> \in(object, hashmap)

Test whether a key is stored in the hashmap.

7.1.11 IsBound\[\] (for IsHashMapRep, IsObject)

> IsBound\[\] (object, hashmap)

Test whether a key is stored in the hashmap.

7.1.12 Unbind\[\] (for IsHashMapRep, IsObject)

> Unbind\[\] (object, hashmap)

Delete a key from a hashmap.

19

(operation)

(operation)

(operation)

(operation)

(operation)

(operation)

(operation)

(operation)

datastructures

7.1.13 Size (for IsHashMapRep)

> Size(hashmap)

Determine the number of keys stored in a hashmap.

7.1.14 IsEmpty (for IsHashMapRep)

> IsEmpty(object, hashmap)

Test whether a hashmap is empty.

20

(operation)

(operation)

Chapter 8

Hashsets

A hash set stores objects and allows efficient lookup whether an object is already a member of the set.
datastructures currently provides a reference implementation of hashsets using a hashtable stored
in a plain GAP list.

8.1 API

8.1.1 IsHashSet (for IsObject and IsFinite)

> IsHashSet (arg) (filter)
Returns: true or false
Category of hashsets

8.1.2 HashSet

> HashSet ([values][,] [hashfunc[, eqfunc]][,] [capacityl]) (function)

Create a new hashset. The optional argument values must be a list of values, which will be
inserted into the new hashset in order. The optional argument hashfunc must be a hash- function,
eqfunc must be a binary equality testing function that returns true if the two arguments are consid-

ered equal, and false if they are not. Refer to Chapter 6 about the requirements for hashfunctions
and equality testers. The optional argument capacity determines the initial size of the hashmap.

8.1.3 AddSet (for IsHashSetRep, IsObject)

> AddSet (hashset, Obj) (operation)

Add obj to hashset.

8.1.4 \in (for IsObject, IsHashSetRep)

> \in(obj, hashset) (operation)

Test membership of obj in hashset

21

datastructures 22

8.1.5 RemoveSet (for IsHashSetRep, IsObject)

> RemoveSet (hashset, obj) (operation)

Remove obj from hashset.

8.1.6 Size (for IsHashSetRep)

> Size(hashset) (operation)

Return the size of a hashset Returns an integer

8.1.7 IsEmpty (for IsHashSetRep)

> IsEmpty(hashset) (operation)
Returns: a boolean
Test a hashset for emptiness.

8.1.8 Set (for IsHashSetRep)

> Set(hashset) (operation)
Returns: a set
Convert a hashset into a GAP set

8.1.9 AsSet (for IsHashSetRep)

> AsSet (hashset) (operation)
Returns: an immutable set
Convert a hashset into a GAP set

8.1.10 Iterator (for IsHashSetRep)

> Iterator(set) (operation)
Returns: an iterator
Create an iterator for the values contained in a hashset. Note that elements added to the hashset
after the creation of an iterator are not guaranteed to be returned by that iterator.

Chapter 9

Memoisation

datastructures provides simple ways to cache return values of pure functions.

9.1 Memoisation with HashMap

9.1.1 MemoizeFunction

> MemoizeFunction(function[, options]) (function)

Returns: A function

MemoizeFunction returns a function which behaves the same as function, except that it caches
the return value of function. The cache can be flushed by calling FlushCaches (Reference: Flush-
Caches).

This function does not promise to never call function more than once for any input -- values
may be removed if the cache gets too large, or GAP chooses to flush all caches, or if multiple threads
try to calculate the same value simultaneously.

The optional second argument is a record which provides a number of configuration options. The
following options are supported.

flush (default true)
If this is true, the cache is emptied whenever FlushCaches (Reference: FlushCaches) is
called.

contract (defaults to ReturnTrue (Reference: ReturnTrue))
A function that is called on the arguments given to function. If this function returns false,
then errorHandler is called.

errorHandler (defaults to none)
A function to be called when an input that does not fulfil contract is passed to the cache.

23

Chapter 10

Ordered Set Datastructures

In this chapter we deal with datastructures designed to represent sets of objects which have an intrinsic
ordering. Such datastructures should support fast (possibly amortised) O(logn) addition, deletion and
membership test operations and allow efficient iteration through all the objects in the datastructure in
the order determined by the given comparison function. Since they represent a set, adding an object
equal to one already present has no effect.

We refer to these as ordered set datastructure because the differ from the GAP notion of a set in a
number of ways:

* They all lie in a common family OrderedSetDSFamily and pay no attention to the families of
the objects stored in them.

* Equality of these structures is by identity, not equality of the represented set

* The ordering of the objects in the set does not have to be default GAP ordering "less than", but
is determined by the attribute LessFunction (10.2.13)

Three implementations of ordered set data structures are currently included: skiplists, binary
search trees and (as a specialisation of binary search trees) AVL trees. AVL trees seem to be the
fastest in general, and memory usage is similar. More details to come

10.1 Usage

Example
gap> s := OrderedSetDS(IsSkipListRep, {x,y} -> String(x) < String(y));
<skiplist O entries>

gap> Addset(s, 1);

gap> AddSet (s, 2);

gap> AddSet(s, 10);

gap> AddSet(s, (1,2,3));

gap> RemoveSet(s, (1,2,3));

1
gap> AsListSorted(s);
[1, 10, 2]

gap> b := OrderedSetDS(IsBinarySearchTreeRep, Primes);
<bst size 168>
gap> 91 in b;

24

datastructures 25

false
gap> 97 in b;
true

10.2 API

Every implementation of an ordered set datastructure must follow the API set out below

10.2.1 IsOrderedSetDS (for IsObject)

> IsOrderedSetDS(arg) (filter)
Returns: true or false
Category of ordered set.

10.2.2 IsStandardOrderedSetDS (for IsOrderedSetDS)

> IsStandardOrderedSetDS(arg) (filter)
Returns: true or false
Subcategory of ordered sets where the ordering is GAP’s default <

10.2.3 OrderedSetDS (for IsOrderedSetDS, IsFunction, IsListOrCollection, IsRan-
domSource)

> OrderedSetDS(filter[, lessThan[, initialEntries[, randomSource]]]) (constructor)

Returns: an ordered set datastructure

The family that contains all ordered set datastructures. Constructors for ordered sets

The argument filter is a filter that the resulting ordered set object will have.

The optional argument 1essThan must be a binary function that returns true if its first argument
is less than its second argument, and false otherwise. The default lessThan is GAP’s built in <.

The optional argument initialEntries gives a collection of elements that the ordered set is
initialised with, and defaults to the empty set.

The optional argument randomSource is useful in a number of possible implementations that
use randomised methods to achieve good amortised complexity with high probability and simple data
structures. It defaults to the global Mersenne twister.

10.2.4 OrderedSetDS (for IsOrderedSetDS, IsFunction, IsRandomSource)

> OrderedSetDS(argl, arg2, arg3) (constructor)

10.2.5 OrderedSetDS (for IsOrderedSetDS, IsListOrCollection, IsRandomSource)

> OrderedSetDS(argl, arg2, arg3) (constructor)

datastructures 26

10.2.6 OrderedSetDS (for IsOrderedSetDS, IsFunction, IsListOrCollection)

> OrderedSetDS(argl, arg2, arg3) (constructor)

10.2.7 OrderedSetDS (for IsOrderedSetDS, IsFunction)

> OrderedSetDS(argl, arg2) (constructor)

10.2.8 OrderedSetDS (for IsOrderedSetDS, IsListOrCollection)

> OrderedSetDS(argl, arg2) (constructor)

10.2.9 OrderedSetDS (for IsOrderedSetDS)

> OrderedSetDS (arg) (constructor)

10.2.10 AddSet (for IsOrderedSetDS and IsMutable, IsObject)

> AddSet(set, object) (operation)

Other constructors cover making an ordered set from another ordered set, from an iterator, from a
function and an iterator, or from a function, an iterator and a random source.
Adds object to set. Does nothing if object insetset.

10.2.11 RemoveSet (for IsOrderedSetDS and IsMutable, IsObject)

> RemoveSet(set, object) (operation)
Returns: Oor1
Removes object from set if present, and returns the number of copies of object that were in
set, that is O or 1. This for consistency with multisets.

10.2.12 \in (for IsObject, IsOrderedSetDS)

> \in(object, set) (operation)

All objects in IsOrderedSetDS must implement \in, which returns true if object is present in
set and false otherwise.

10.2.13 LessFunction (for IsOrderedSetDS)

> LessFunction(set) (attribute)

The binary function to perform the comparison for elements of the set.

datastructures

10.2.14 Size (for IsOrderedSetDS)

> Size(set)

The number of objects in the set

10.2.15 IteratorSorted (for IsOrderedSetDS)

> IteratorSorted(set)
Returns: iterator

27

(attribute)

(operation)

Returns an iterator of set that can be used to iterate through the elements of set in the order

imposed by LessFunction (10.2.13).

10.3 Default methods

Default methods based on IteratorSorted (Reference: IteratorSorted) are installed for the follow-
ing operations and attributes, but can be overridden for data structures that support better algorithms.

10.3.1 Iterator (for IsOrderedSetDS)

> Iterator(arg)

10.3.2 AsSSortedList (for IsOrderedSetDS)

> AsSSortedList(arg)

10.3.3 AsSortedList (for IsOrderedSetDS)

> AsSortedList(arg)

10.3.4 AsList (for IsOrderedSetDS)

> AsList(arg)

10.3.5 EnumeratorSorted (for IsOrderedSetDS)

> EnumeratorSorted(arg)

10.3.6 Enumerator (for IsOrderedSetDS)

> Enumerator (arg)

(operation)

(attribute)

(attribute)

(attribute)

(attribute)

(attribute)

datastructures

10.3.7 IsEmpty (for IsOrderedSetDS)

> IsEmpty(arg)
Returns: true or false

10.3.8 Length (for IsOrderedSetDS)

> Length(arg)

10.3.9 Position (for IsOrderedSetDS, IsObject, IsInt)

> Position(argl, arg2, arg3)

10.3.10 PositionSortedOp (for IsOrderedSetDS, IsObject)

> PositionSortedOp(argl, arg2)

10.3.11 PositionSortedOp (for IsOrderedSetDS, IsObject, IsFunction)

> PositionSortedOp(argl, arg2, arg3)

28

(property)

(attribute)

(operation)

(operation)

(operation)

Chapter 11

Slices

A slice is a sublist of a list. Creating a slice does not copy the original list, and changes to the list also
change a slice of the list.

11.1 API

11.1.1 Slice

> Slice () (function)
Returns: a slice
Constructor for slices

11.1.2 IsSlice (for IsList)

> IsSlice(arg) (filter)
Returns: true or false
Category of slices

11.1.3 \[\] (for IsSliceRep, IsPosInt)

> \[\] (slice, value) (operation)

List-style access for slices.

11.1.4 \[\]\:\= (for IsSliceRep and IsMutable, IsPosInt, IsObject)

> \[\]\:\=(slice, value, object) (operation)

List-style assignment for slices.

11.1.5 \in (for IsObject, IsSliceRep)

> \in(object, slice) (operation)

Test whether a value is stored in the slice.

29

datastructures

11.1.6 IsBound\[\] (for IsSliceRep, IsPosInt)

> IsBound\[\](slice, value)

Test whether a location is bound in a slice.

11.1.7 Unbind\[\] (for IsSliceRep and IsMutable, IsPosInt)

> Unbind\[\] (slice, value)

Unbind a value from a slice.

11.1.8 Length (for IsSliceRep)

> Length(slice)

Determine the length of a slice.

30

(operation)

(operation)

(operation)

Chapter 12

Stacks

A stack is a deque where items can be Pushed onto the stack, and the top item can be Popped off the
stack.
Stacks are wrapped GAP plain lists.

12.1 API

12.1.1 Stack

> Stack() (function)
Returns: stack
Constructor for stacks

12.1.2 IsStack (for IsObject)

> IsStack(arg) (filter)
Returns: true or false
Category of heaps

12.1.3 Push (for IsStack, IsObject)

> Push(stack, object) (operation)

Puts object onto stack.

12.1.4 Peek (for IsStack)

> Peek(stack) (operation)
Returns: object or fail
Return the object at the top of stack. If stack is empty, returns fail

12.1.5 Pop (for IsStack)

> POp (stack) (operation)
Returns: object or fail
Remove the top item from stack and return it. If stack is empty, this function returns fail.

31

datastructures 32

12.1.6 Size (for [IsStack])

> Size(arg) (attribute)

Number of elements on stack

References

[FSST86] Michael L. Fredman, Robert Sedgewick, Daniel D. Sleator, and Robert E. Tarjan. The
pairing heap: A new form of self-adjusting heap. Algorithmica, 1(1):111-129, Nov 1986.
9

33

Index

datastructures, 6
\[\]
for IsHashMapRep, IsObject, 19
for IsSliceRep, IsPosInt, 29
\\I\:\=
for IsHashMapRep, IsObject, IsObject, 19
for IsSliceRep and IsMutable, IsPoslnt,
IsObject, 29
\in
for IsObject, IsHashMapRep, 19
for IsObject, IsHashSetRep, 21
for IsObject, IsOrderedSetDS, 26
for IsObject, IsSliceRep, 29

AddSet
for IsHashSetRep, IsObject, 21
for IsOrderedSetDS and IsMutable, IsObject,
26
AsList
for IsOrderedSetDS, 27
AsSet
for IsHashSetRep, 22
AsSortedList
for IsOrderedSetDS, 27
AsSSortedList
for IsOrderedSetDS, 27

BinaryHeap, 9

Capacity
for IsDeque, 11
for IsQueue, 11

Dequeue
for IsQueue, IsObject, 11

Enqueue

for IsQueue, IsObject, 11
Enumerator

for IsOrderedSetDS, 27

34

EnumeratorSorted
for IsOrderedSetDS, 27

HashBasic, 16

HashMap, 18

HashSet, 21
Hash_PermGroup_Complete, 17
Hash_PermGroup_Fast, 16
Heap, 8

IsBinaryHeapFlatRep

for IsHeap and IsPositionalObjectRep, 9
IsBound\ [\]

for IsHashMapRep, IsObject, 19

for IsSliceRep, IsPosInt, 30
IsDeque

for IsObject, 10
IsEmpty

for IsHashMapRep, 20

for IsHashSetRep, 22

for IsOrderedSetDS, 28
IsHashMap

for IsObject and IsFinite, 18
IsHashSet

for IsObject and IsFinite, 21
IsHeap

for IsObject, 8
IsOrderedSetDS

for IsObject, 25
IsPairingHeapFlatRep

for IsHeap and IsPositionalObjectRep, 9
IsPartitionDS

for IsObject, 14
IsQueue

for IsObject, 10
IsSlice

for IsList, 29
IsStack

for IsObject, 31

IsStandardOrderedSetDS
for IsOrderedSetDS, 25
Iterator
for IsHashSetRep, 22
for IsOrderedSetDS, 27
IteratorSorted
for IsOrderedSetDS, 27

KeyIterator

for IsHashMap, 19
Keys

for IsHashMap, 18
KeyValueIterator

for IsHashMap, 19

datastructures

for IsPartitionDS, IsPosInt, 14

PartsOfPartitionDS

for IsPartitionDS, 15
Peek

for IsHeap, 8

for IsStack, 31
PlistDeque, 12
PlistDequeExpand, 13
PlistDequePeekBack, 13
PlistDequePeekFront, 13
PlistDequePopBack, 12
PlistDequePopFront, 12
PlistDequePushBack, 12
PlistDequePushFront, 12

35

Pop
for IsHeap, 8
for IsStack, 31

Length
for IsDeque, 11
for IsOrderedSetDS, 28

for IsQueue, 11 POprac}; . 0
for IsSliceRep, 30 or IsDeque,

i PopFront
LessFunction e 11
for IsOrderedSetDS, 26 . Of sDeque,

Position

MemoizeFunction, 23 for IsOrderedSetDS, IsObject, IsInt, 28
Merge PositionSortedOp

for IsOrderedSetDS, IsObject, 28

for IsOrderedSetDS, IsObject, IsFunction, 28

for IsHeap, IsHeap, 8

NewHeap Push
for IsHeap, IsObject, IsObject, 8 for IsHeap, IsObject, 8
NumberParts for IsStack, IsObject, 31
for IsPartitionDS, 15 PushBack
for IsDeque, IsObject, 10
OrderedSetDS PushFront

for IsOrderedSetDS, 26
for IsOrderedSetDS, IsFunction, 26
for IsOrderedSetDS, IsFunction, IsListOr- RemoveSet

for IsDeque, IsObject, 10

Collection, 26 for IsHashSetRep, IsObject, 22
for IsOrderedSetDS, IsFunction, IsListOr- for IsOrderedSetDS and IsMutable, IsObject,
Collection, IsRandomSource, 25 26
for IsOrderedSetDS, IsFunction, IsRandom- Representative
Source, 25 for IsPartitionDS, IsPosInt, 14
for IsOrderedSetDS, IsListOrCollection, 26 RootsIterator0fPartitionDS
for IsOrderedSetDS, IsListOrCollection, Is- for IsPartitionDS, 15
RandomSource, 25
Set
PairingHeap, 9 for IsHashSetRep, 22
PartitionDS Size

for IsPartitionDS, IsCyclotomicCollColl, 14 for [IsStack], 32

datastructures

for IsHashMapRep, 20
for IsHashSetRep, 22
for IsOrderedSetDS, 27
SizeUnderlyingSetDS
for IsPartitionDS, 15
Slice, 29
Stack, 31

Unbind\ [\]
for IsHashMapRep, IsObject, 19
for IsSliceRep and IsMutable, IsPosInt, 30
Unite
for IsPartitionDS and IsMutable, IsPosInt, Is-
PosInt, 15

Valuelterator

for IsHashMap, 19
Values

for IsHashMap, 18

36

	Introduction
	Purpose and goals of this package
	Overview over this manual
	Feedback

	Installation
	Building the Kernel Module
	Building the Documentation

	Heaps
	Introduction
	API
	Binary Heaps
	Pairing Heaps
	Declarations
	Implementation

	Queues and Deques
	API
	Deques implemented using plain lists

	Union45Find
	Introduction
	API

	Hash Functions
	Introduction
	Hash Functions for Basic Types
	Hash Functions for Permutation Groups

	Hashmaps
	API

	Hashsets
	API

	Memoisation
	Memoisation with HashMap

	Ordered Set Datastructures
	Usage
	API
	Default methods

	Slices
	API

	Stacks
	API

	References
	Index

