
CapiSuite 0.4.5

Gernot Hillier
gernot@hillier.de

CapiSuite 0.4.5
by Gernot Hillier

Table of Contents
Introduction ...i

1. Welcome to CapiSuite...i
capisuite..i

2. Structure of the manual..ii

1. Getting Started...1

1.1. Requirements and installation of CapiSuite..1
1.1.1. Requirements...1

1.1.1.1. Hardware and drivers..1
1.1.1.2. Software..1

1.1.2. Installation..3
1.1.2.1. Installation from binary packages...3

1.1.2.1.1. Installation from RPM packages (SUSE, Fedora,
Mandrake & Co.)...4

1.1.2.1.2. Installation from other packages................................4
1.1.2.2. Installation from the source packages...................................4
1.1.2.3. Installation from Subversion...5

1.1.3. Updating from previous versions...5
1.1.3.1. From 0.4.4 to 0.4.5..6

1.2. How CapiSuite works, how it is configured and started.............................6
1.2.1. How does CapiSuite work?..6
1.2.2. Configuration of CapiSuite..7

capisuite.conf...7
1.2.3. Startup of CapiSuite...9

1.3. Features and configuration of the default scripts......................................10
1.3.1. Script features..10
1.3.2. How the scripts work...11
1.3.3. Script configuration..12

fax.conf..12
answering_machine.conf...17

1.3.4. Deleting old files..22
1.4. Using CapiSuite together with the default scripts.....................................23

1.4.1. Receiving calls...23
1.4.2. Doing a remote inquiry..23
1.4.3. Sending fax jobs...23

capisuitefax..23

2. Users Guide...27

2.1. Introduction to Python..27
2.1.1. Python Basics...27
2.1.2. Blocks, Functions and Exceptions...29
2.1.3. Working with modules...30

iii

2.2. A first look on the incoming and idle scripts..31
2.2.1. The incoming script...31
2.2.2. The idle script..32

2.3. Used file formats...33
2.3.1. Format of voice files (inversed A-Law, 8kHz, mono)....................33

2.3.1.1. Creating A-Law files...34
2.3.1.2. Playing A-Law files..34

2.3.2. Format of fax files (Structured Fax Files)......................................35
2.3.2.1. Creating a SFF..35
2.3.2.2. Viewing / converting from SFF...35
2.3.2.3. Color faxes - the CFF format..36

2.4. Tutorial: writing an incoming script...36
2.4.1. Basics and a really dumb answering machine...............................36
2.4.2. Improving it to a useful (?) state..39
2.4.3. Using sensible file names...40
2.4.4. Automatic fax recognition and receiving.......................................41

2.5. Example for an idle script...43
2.6. Structural overview of the default scripts...47

2.6.1. incoming.py...47
2.6.1.1. functioncallIncoming ..48
2.6.1.2. functionfaxIncoming ..48
2.6.1.3. functionvoiceIncoming ..48
2.6.1.4. functionremoteInquiry ..49
2.6.1.5. functionnewAnnouncement ..49

2.6.2. idle.py...50
2.6.2.1. functionidle ..50
2.6.2.2. functionsendfax ...50
2.6.2.3. functionmovejob ...51

2.6.3. capisuitefax..51
2.6.4. cs_helpers.py..51

2.7. CapiSuite command reference..52

A. Acknowledgements..55

B. CAPI 2.0 Error Codes...57

B.1. CAPI errors describing connection problems..57
B.1.1. Protocol errors...57
B.1.2. ISDN error codes...58

B.2. Internal CAPI errors...60
B.2.1. Informative values (no error)...60
B.2.2. Errors concerning CAPI_REGISTER...60
B.2.3. Message exchange errors..61
B.2.4. Resource/Coding Errors..61
B.2.5. Errors concerning requested services..61

iv

List of Examples
2-1. example.py..37
2-2. example.py, improved...39
2-3. using unique filenames...40
2-4. Adding fax functions..41
2-5. idle_example.py..44
2-6. idle_example.py, version for CapiSuite..45

v

vi

Introduction

1. Welcome to CapiSuite
Welcome to CapiSuite, a Python-scriptable ISDN telecommunication suite.

This manual should help you to be able to use CapiSuite as quick as possible. As I
hate reading long documentation just as much as you do, let’s jump right in.

capisuite

Name
capisuite — Python-scriptable ISDN telecommunication suite

Description
CapiSuite is a Python-scriptable ISDN telecommunication suite. It uses the new
CAPI interface for accessing your ISDN-hardware - so you’ll need a card for which
a CAPI compatible driver is available. Currently these are all cards manufactured by
AVM and some Eicon cards.

CapiSuite tries to give the user the ability to code his own ISDN applications
without having to fiddle around with all the dirty programming details like callback
functions, data buffers, protocol settings and so on.

I took a scripting language which is (in my opinion) very easy to understand, to use
and to learn - especially for beginners: Python. I extended it with some functions
providing the basic ISDN "building blocks" for the users application. Behind these
functions the heart of CapiSuite implements all the dirty details a user isn’t
interested in. My goal was to make script-coding as simple as possible but to also
give you the flexibility to realize what you want.

To give you an impression, coding a simple answering machine is as easy as:

def callIncoming (call, service, call_from, call_to):
connect_voice (call, 10) # answer call after 10 secs
audio_send (call, "announcemnt.la") # play announcement
audio_send (call, "beep.la") # play beep
audio_receive (call, "call.la", 10) # record call

i

Introduction

Of course some details are missing like creating a unique filename or storing the
additional information (called and calling party numbers, time, ...) - but I assume
you got my idea.

And - don’t be afraid - if you just want to have a normal answering machine or send
and receive some fax documents, you can use the default scripts distributed with
CapiSuite. They give you already some nice features - e.g. the answering machine is
multi-user ready, supports automatic fax detection and remote inquiry functions.
You’ll only need to tell CapiSuite some details like your own number, record an
own announcement and that’s it.

So CapiSuite is already equipped for your daily telecommunication needs - but if
you don’t like to do the things the way I do - just change it or completely do it on
your own. And if you write nice scripts or have changes to my default scripts, I
would love to get and perhaps make them available for all users if you don’t mind.

2. Structure of the manual
This manual is split into three big parts.

The first part (Chapter 1) explains how to install CapiSuite, what you can do with
the default scripts you have after installing it and how to configure them. No line of
code will be presented here. If you just want to use the default scripts that should be
all the reading you need.

The second part (Chapter 2) will tell you how to write your own scripts. It will give
you a very, very small introduction into Python and a complete reference of the
commands CapiSuite adds to it. Last, an overview over the default scripts is given
which will tell you how they work so you can easily take them as starting points
and/or examples for your own application.

The last part is intended for programmers who want to help in developing the
CapiSuite core. It provides an overview of the system and a detailled description for
each single class, method and attribute. As it’s autocreated from the sources of
CapiSuite, it’s not included in this document. You’ll find it locally in
../reference/index.html or online at http://www.capisuite.de/reference/index.html.

There are also some additional parts containing "what I also wanted to mention":

As CapiSuite started as a diploma thesis, I want to thank all who helped me so far in
Appendix A

ii

Introduction

When you want to code your own scripts or want to help in developing the
CapiSuite core, you’ll soon stumble upon some special ISDN and CAPI error
codes, which are explained inAppendix B.

If you need further information or support, please have a look at the CapiSuite
home page on http://www.capisuite.de. You’ll find links to a bug tracker, up-to-date
documentation, downloads and other ressources there. If you have questions, need
support or want to tell us your ideas concerning CapiSuite or your opinion, you’re
more than welcome on the CapiSuite mailing lists. Please don’t write me personal
mails with such questions as this won’t help other users and I can’t answer the same
question ten times a day, sorry. For informations on how to subscribe to the lists and
where to find the archives, please also refer to the home page.

Hope I managed to whet your appetite - so let’s now really start over to get you
ready to use it.

iii

Introduction

iv

Chapter 1. Getting Started

1.1. Requirements and installation of
CapiSuite

1.1.1. Requirements

1.1.1.1. Hardware and drivers

As CapiSuite uses the CAPI (Common ISDN Application Programming Interface)
for accessing your ISDN-hardware, you’ll need a card for which a CAPI compatible
driver is available.

Currently these are all cards manufactured by AVM and some Eicon cards. If you
have one of the passive cards of AVM, you’ll have to download and install their
CAPI drivers.

There are also some distributions (e.g. current versions of SUSE) which include the
Capi4Linux drivers from AVM already - you’ll only have to activate them (use
YaST2 in SUSE Linux). If you own an active card of AVM (e.g. the B1, C2 or C4),
then you’ll have everything you need already installed.

No, there’s no way to get it working with the old ISDN4Linux interface. Perhaps
there never will be one as the ISDN4Linux project meanwhile provides a CAPI
compatible interface in the mISDN project - CapiSuite certainly also works with it.

CapiSuite has mainly been tested on AVM ISDN cards, esp. the Fritz!PCI, the
Fritz!USB and the B1 on the i386 platform but there should be no problem with
other CAPI-compatible drivers for other cards or on other platforms. Nevertheless,
some features aren’t mandatory for all CAPI-compatible cards, so perhaps you may
not be able to fax or to switch from voice to fax mode with all cards.

1.1.1.2. Software

CapiSuite depends on some packages which must be installed before CapiSuite can
be used.

I will list them here with a short information why this packages are needed and
where to find further information on how to install them. It may be always a good
idea to check the installation tool of your favourite distribution first and see if
they’re included with it before trying to download and install them from the net.

1

Chapter 1. Getting Started

Don’t be afraid, because there are so many - most of them are included in nearly
every distribution and perhaps are already installed on your system.

Python >= 2.2

CapiSuite uses an embedded Python interpreter to interpret the given scripts -
so you’ll need an installed and working version of Python. This should be
included in mostly every up-to-date Linux distribution. For further infos on
Python, a nice tutorial and much more, please go to http://www.python.org

sox >= 12.17.3

This is the swiss-knife for converting audio formats. It’s not required by the
CapiSuite core, but will be very helpful if you want to hear or record the voice
files used for calls on your machine. It’s also required if you want to use the
default scripts of CapiSuite. I’ll bet this is included in your distribution and
most likely already installed on your system. Just try to startsoxto get sure. As
Helmut Gruber pointed out, you need at least version 12.17.3, as this version
started to handle inverse A-Law files. You’ll find more details on
http://sox.sourceforge.net

sfftobmp

CapiSuite will save fax files in the CAPI specific format Structured Fax File
(SFF). sfftobmp is a small but useful converter to convert this files to more
common formats like JPEG, TIFF or BMP. Get it on
http://sfftools.sourceforge.net/sfftobmp.html. It’s again not needed by the
CapiSuite core, but by the default scripts.

sffview

This tool is a simple but useful SFF viewer. It’s not needed by any CapiSuite
component, but very useful if you just want to see a fax file without the need to
convert it first. You can get it from http://sfftools.sourceforge.net/sffview.html.

tiff2ps

A small utility to convert TIFF files to the Postscript format. It’s needed by the
default script to convert faxes to PDF files (SFF->TIFF->PS->PDF :-}). It’s
often included in a package calledtiff or tifftools . Details on
http://www.libtiff.org

ps2pdf

Again a small utility for the SFF->PDF chain - this time for the conversion of
Adobe PostScript to Adobe PDF. It’s part of Ghostscript, so you most likely
have it already. (http://www.gnu.org/software/ghostscript/ghostscript.html)

2

Chapter 1. Getting Started

current Ghostscript with cfax patch

Current Ghostscript versions will include a device to create the above
mentioned SFF files. If you have an older version, you’ll need the patch from
http://sfftools.sourceforge.net/ghostscript.html. To see if your GhostScript
version already has this patch, please callgs --helpand see if you can find the
devicecfax in the long list of supported devices.

jpeg2ps

The jpeg2pscommand is used to convert color fax files to the PostScript
format for mail delivery. It’s not so important, unless you want to be able to
receive color faxes. Unfortunately, there’s currently no way to disable the
reception of color faxes with AVM cards due to a bug in the AVM CAPI driver.
So if someone sends you a color fax (which seems to be a very rare case),
you’ll need this package - unless you’ll get a mail stating this error. If your
distribution doesn’t have this packages, you can download it from
http://www.pdflib.com/jpeg2ps/.

As the color fax protocol uses concatenated JPEG files for transferring
multiple pages, you should also download and apply my multipleJPEG patch
from http://www.hillier.de/linux/jpeg2ps-multi.php3

1.1.2. Installation
First of all, I would suggest to check if your CAPI-driver is setup correctly. To do
this, simply runcapiinfo on a root shell.

If you get many lines of output, your CAPI driver works. If you just get an error
message, you’ll have to install CAPI-compatible drivers. Refer to the
documentation of your ISDN card vendor, your Linux distribution and/or some
ISDN mailing lists for this, please. If you really can’t find anyone to support you in
doing this, you may ask on the CapiSuite mailing lists for supportas last resort.

The rest of the installation depends on wether you use binary or source packages for
installing CapiSuite. If you don’t want to change the CapiSuite sources, I would
recommend you to use the binary packages when available for your distribution and
platform.

You can download both binary packages and sources from the download section on
http://www.capisuite.de/download. If you built packages for other distributions not
yet available, please send me your link and I’ll happily include it there...

3

Chapter 1. Getting Started

1.1.2.1. Installation from binary packages

If you can get binary packages for your distribution and platform, I would advise to
use them. There are many binary packages of CapiSuite available for different
distributions maintained by different people. It’s also part of current versions of
SUSE, Debian and Gentoo.

If you managed to install CapiSuite on a system not mentioned below, please tell
me and I’ll include the instructions here. If you have created binary packages for
other distributions, I’ll be also happy to point to your download section or make
them available on my page.

Now everything should be setup ready to run. So please read on inSection 1.2.

1.1.2.1.1. Installation from RPM packages (SUSE, Fedora, Mandrake & Co.)

To install the CapiSuite RPM packages you can either use your favorite setup tool -
either provided by your distributor or the community - or you can do manually (as
root):

rpm -Uvh capisuite-version.rpm

1.1.2.1.2. Installation from other packages

Please refer to the documentation of your distribution and the information given in
the packages or on the homepage of the maintainers. If someone wants to write a
section about these packages, please contact me.

1.1.2.2. Installation from the source packages

If there are no binary packages you can use or if you like to do everything on your
own, you can get the sources from the download section.

Download the newest source tarball (capisuite-X.Y.tar.gz) from the CapiSuite
homepage and copy it to some location. Go there and issue the following
commands:

./configure
make
su # get root now
make install

This will install CapiSuite completely in the/usr/local -tree. If you want it to
stay in other directories, please see the commandline-help printed by

4

Chapter 1. Getting Started

./configure --help

for options to customize the installation directories.

1.1.2.3. Installation from Subversion

If you want to live on the bleeding edge and always test the newest features, you
may also checkout the current sources of CapiSuite from the repository.

This is not recommended unless you want to test the newest features or want to help
in developing CapiSuite! The development sources may do anything, may not work
or not even compile. Do this on your own risk!

You’ll need installed and working versions of the usual development tools like
GNU make, gcc/g++ and also the components described above (esp. development
packages of Python).

If you want to build the documentation out of the sources, you’ll also need Doxygen
and correctly installed Docbook/XML tools.

For instructions on where to find the repository and how to checkout the sources,
please refer to the download section on the CapiSuite homepage on
http://www.capisuite.de.

After you checked out the sources to some directory, please do

make -f Makefile.cvs

Now, you can continue with the normal installation process as described inSection
1.1.2.2.

1.1.3. Updating from previous versions
This section will give you an overview of how to update CapiSuite from earlier
versions.

In general, the usual update mechanism depending on your installation method
should be used - that means the update features of your package managers if you
installed from binary packages. If you installed from sources, you should save your
configuration files before doingmake install. As this is done like for any other
software package you use, we won’t go into further detail about that here.

What this section should mainly cover are the changes in the configuration files and
requirements to other tools between different versions, so that you’ll be able to

5

Chapter 1. Getting Started

update your configuration quickly. For a more complete list of new features and
important changes, please refer to the fileNEWSdistributed with the CapiSuite
packages. In addition, all single changes in the different source code files can be
found in theChangeLog , which, however, will only be interesting for developers, I
suppose.

1.1.3.1. From 0.4.4 to 0.4.5

Thedefault scriptsnow use an SMTP connection to localhost instead of calling the
sendmailcommand manually as previous versions did. This was changed because
the other mechanism had many stability problems in the past. This means, you now
have to have a running SMTP daemon listening on your localhost. As this is the
default configuration of most distributions, this should be no problem.

In answering_machine.conf andfax.conf , two new options have been added:
fax_email_from andvoice_email_from allow the configuration of the from
address CapiSuite uses when sending mails to the user. These new entries are
optional - if you don’t set them, the user name is used as from address as in
previous versions.

1.2. How CapiSuite works, how it is
configured and started

First, let’s start with a short introduction what CapiSuite actually is and how it
works. After that, the configuration and startup of CapiSuite will be explained in
short.

1.2.1. How does CapiSuite work?
CapiSuite is a daemon (program which runs in the background) whos main task is
to sit around and wait until a call is incoming. If this happens it will start a special
Python script - theincoming script- and do what this script tells it, for example
record a voice call to implement an answering machine.

To also be able to issue outgoing calls, another script is called at regular intervals -
the idle script. It can check any resource to get instructions for placing a call - one
can for example imagine to check a special mail account or watch a special
directory where tasks are placed by the user.

6

Chapter 1. Getting Started

So all user-visible actions and the behaviour of CapiSuite are defined in these two
scripts.

You’ll need to do two things now:

• provide scripts by either

• using and configuring the default scripts distributed with CapiSuite or

• writing your own scripts (perhaps by using the default ones as templates)

• configure CapiSuite itself and tell it where to find the two scripts

This page concentrates on the general configuration of CapiSuite - that consists
mainly of options telling it which scripts to use and where and how to log its
activities. After that, some details about starting CapiSuite are described.

The next pages will then introduce the standard scripts you already installed along
with CapiSuite and tell you how to use the answering maching and fax functions
provided by them.

The details on how to write your own scripts are covered in another part of the
documentation (Chapter 2).

1.2.2. Configuration of CapiSuite
CapiSuite uses a general configuration file for the core functions. This file should be
located in/etc/capisuite/capisuite.conf or
/usr/local/etc/capisuite/capisuite.conf depending on how you
installed CapiSuite. It’s described in detail incapisuite.conf(5). Most options are set
to reasonable defaults already for using the standard scripts - so if you want you can
also skip this section.

capisuite.conf

Name
capisuite.conf — configuration of the CapiSuite daemon

7

Chapter 1. Getting Started

Description
The options for the CapiSuite daemon are configured here. They will be presented
in brief here - for further details please refer to the comments in the configuration
file itself.

Options

incoming_script="/path/to/incoming.py"

This option tells CapiSuite which script should be executed at incoming calls.
Only change this if you want to use your own script.

idle_script="/path/to/idle.py"

This option reflects the path and name of the idle script. This script is called in
regular intervalls to check if any outgoing call should be done. As above, the
default should be ok if you don’t use your own script.

idle_script_interval="30"

Here you can define how often the idle script should be executed. The number
given is the interval between subsequent invocations in seconds. Lesser
numbers give you quicker response to queued jobs but also a higher system
load. The default should be ok in most cases.

log_file="/path/to/capisuite.log"

This file will be used for all "normal" messages printed by CapiSuite telling
you what it does. Error messages are written to a special log (see below).

log_level="1"

You can define how detailled the log output of CapiSuite will be. The default
will give you some informational messages for each incoming and outgoing
call and should be enough for normal use. I would recommend to only increase
it if you encounter some problems. Logs of higher level are mainly intended
for developers, so just use them if you want to report a problem or have some
know-how of the CAPI interface and the internals of CapiSuite.

log_error="/path/to/capisuite.error"

All errors which CapiSuite detects internally and in your scripts will end up
here. They are written to an extra file so that they don’t get lost in the normal
log. Please check this log regularly for any messages - especially when you

8

Chapter 1. Getting Started

encounter problems. Please report all messages you don’t understand and
which aren’t caused by your own script-modifications to the CapiSuite team.

DDI_length="0"

When your ISDN card is connected to an ISDN interface in PtP mode, i.e. if
you use DDI which, in understandable words mean you have only one ISDN
phone number and can define your own extensions as you like, you have to set
the length of your extension numbers here. In Germany, PtP mode is called
"Anlagenanschluss". Let’s say you use 1234-000 till 1234-999, then your
DDI_length would be 3. If you set this to 0, DDI/PtP is disabled.

If you’re not sure what all this should mean, then chances are high you don’t
use DDI and can leave this option as it is.

DDI_base_length="0"

This option is only used when DDI_length is not 0. This is the length of your
base number - in the example above it would be 4.

DDI_stop_numbers=""

If you usually use extension numbers of a specified length, but also want to use
some shorter ones (e.g. the "-0" extension for you switchboard), then you can
list these shorter extensions here, separated by commas.

1.2.3. Startup of CapiSuite
As CapiSuite is a daemon, it is normally activated during the system startup
process. Just add a call to

/path/to/capisuite -d

in your startup scripts. In LSB conforming Linux distributions, you’ll find the
startup scripts in/etc/init.d . For detailled documentation how to add a service
there please refer to the documentation of your distribution. There’s an example
startup script written for SUSE Linux included in the source distribution (see
rc.capisuite) which should (hopefully) work with other LSB compliant
distributions, too. If you need to modify it, I’ll welcome your feedback and happily
add instructions for other distributions here.

9

Chapter 1. Getting Started

If you use the right RPM packages of CapiSuite, the necessary scripts should
already be included. For activating them, please use your distributors config tool. If
you use the RPM distributed with SUSE Linux and want to stay with the default
scripts, everything should work "out of the box". As soon as you have configured
the default scripts, simply runrccapisuite restart.

For debug purposes, you can also start CapiSuite manually at any time by just
calling

/path/to/capisuite

There are also some other commandline options available:

commandline options of CapiSuite

--help, -h

show a short summary of commandline options

--config=file, -c file

use a custom configuration file instead of
/etc/capisuite/capisuite.conf or
/usr/local/etc/capisuite/capisuite.conf .

--daemon, -d

run as daemon (used in your startup script, see above)

CapiSuite can run as any user you want theoretically. It only needs read/write
permissions to/dev/capi20 . If you use the default scripts, however, CapiSuite
mustrun asroot .

1.3. Features and configuration of the default
scripts

As already written above, CapiSuite comes with default scripts giving you the most
used communication functions of an answering machine and a fax device.

This section should help you to use them for your daily needs.

10

Chapter 1. Getting Started

1.3.1. Script features
The scripts distributed with CapiSuite give you the following main functions:

• multi-user answering machine

• different users using different numbers and different announcements are
supported

• incoming calls are saved and sent to the user by email

• the delay until a call is accepted and the maximum record length are freely
adjustable

• silence is detected and the call terminated after an adjustable silence period

• incoming fax calls are automatically detected and received

• comfortable, menu-controlled remote inquiry functions are supported telling
you the date/time when the call was received and the called and calling
numbers.

• record your own announcement via the remote inquiry menu

• nearly each setting is configurable globally but can be overwritten for each user

• fax machine

• different users using different numbers are supported

• incoming faxes are stored and sent to the user by email

• command line tool for faxing PostScript documents included

• number of tries and delays for sending faxes freely configurable

• currently supports only one ISDN controller for outgoing faxes

As my native language is german, all waves distributed with CapiSuite are in
german only. If someone wants to provide waves in english (or any other language),
please contact me. Thx!

1.3.2. How the scripts work
Here follows a rough overview of how the scripts work in general. I will only
explain the behaviour which is important for the user here. If you want to
understand the internals, please refer toSection 2.6.

11

Chapter 1. Getting Started

When an incoming call is received, several lists for the different users are searched
for the called number. The different users can define their own numbers in the
configuration (see below). So the scripts decide by looking on the called number to
which user the call destinates. If they find the number in the voice- or fax-number
list of any user, they’ll answer the call with this service and give the caller the
possibility to leave his message or send his fax.

The received document is then saved to a local directory in some native format and
also converted to a well-known format and mailed to the user along with some
details of the call. Voice calls are sent as a WAV attachment, while fax calls are sent
as PDF documents attached to the mail.

So you’ll normally get your incoming calls as a mail to a specified address - but
they’re also saved in the local filesystem to be on the safe side. It’s your task to
delete old files you don’t need any more. For further instructions, please seeSection
1.3.4.

There’s also the possibility to do a remote inquiry on the answering machine. The
caller is presented a menu where he can choose to record his announcement or to
hear the saved voice calls. He will be told how many calls are available, from whom
and when they were received and so on. He’ll also be able to delete recorded calls
he doesn’t need any more.

Another script will check special queue directories for fax send jobs regularly. To
put jobs in this directory, the commandline toolcapisuitefax is provided. See
Section 1.4for further details on this.

1.3.3. Script configuration
There are some important options which the scripts need to know before you can
use them - things like the users’ numbers and some details of how to handle the
calls.

These options are read from two configuration files. All options for the two files are
described in short below. For all details, please see the comments in the sample
configuration files installed with CapiSuite.

fax.conf

Name
fax.conf — configuration of the CapiSuite fax services

12

Chapter 1. Getting Started

Description
This file holds all available config options for the fax services provided by the
default scripts distributed with CapiSuite. It is read from
/etc/capisuite/fax.conf or /usr/local/etc/capisuite/fax.conf

(depending on the installation).

It is divided into one or more sections. A section begins with the section name in
square brackets like[section] while the options arekey="value" lines.

A special section called[GLOBAL] and one section for each user called
[<username>] are required.The<username> must be a valid system user.

The [GLOBAL] -section defines some global options like pathnames and default
settings for options that can be overridden in the user-sections. The user-sections
hold all the options which belong to a particular user.

The [GLOBAL] section

spool_dir="/path/to/spooldir/"

This directory is used to archive sent (or failed) jobs. It must exist and the user
CapiSuite runs as must have write permission to its subdirectories. Two
subdirectories are used:

spooldir/done/

Jobs finished successfully are moved to this directory.

spooldir/failed/

Job which have failed finally end up here.

This option is mandatory.

fax_user_dir="/path/to/userdir/"

This directory is used to store fax jobs and received documents to. It must exist
and the user CapiSuite runs as must have write permission to it. It will contain
one subdirectory for each configured user (named like his userid). The
following subdirectories are used below the user-specific dir:

user_dir/username/received/

Received faxes are saved here.

13

Chapter 1. Getting Started

user_dir/username/sendq/

Fax files to be sent are queued here bycapisuitefax.

This option is mandatory.

send_tries="10"

When a fax can’t be sent to the destination for any reason, it’s tried for several
times. This setting limits the number of tries. If all tries failed, the job will be
moved to the failed dir (seefax_spool_dir) and the user will get a mail.

This option is optional. If not given, it defaults to 10 tries.

send_delays="60,60,60,300,300,3600,3600,18000,36000"

When a fax can’t be sent to the destination for any reason, it’s tried again. This
setting specifies the delays in seconds between subsequent tries. The different
values are separated with commas andno blanks. The list should have
send_tries-1 (seefax_send_tries) values - if not, surplus entries are
ignored and missing entries are filled up with the last value. The default should
just be ok giving you increasing delays for up to 10 tries.

This option is optional. If not given, it defaults to the list shown above.

send_controller="1"

If you have more than one ISDN controller installed (some active cards for
more than one basic rate interface like the AVM C2 or C4 are also represented
as multiple controllers for CAPI applications like CapiSuite), you can decide
which controller (and therefore which basic rate interface) should be used for
sending your faxes. All controllers are numbered starting with 1. If you’re not
sure which controller has which number, increase the log level to at least 2 in
CapiSuite (seeSection 1.2.2), restart it and have a look in the log file where all
controllers will be listed then. Unfortunately, CapiSuite isn’t able to use more
than one controller for sending faxes at the moment, so no list is allowed here.
If you have only one controller, just leave it at1

This option is optional. If not given, it defaults controller 1.

outgoing_MSN="<your MSN>"

This number is used as our own number for outgoing calls. If it’s not given, the
first number of fax_numbers is used (see user sections). If this one is also

14

Chapter 1. Getting Started

empty, the user can’t send faxes. Please replace with one valid MSN of your
ISDN interface or leave empty. This value can be overwritten in the user
sections individually.

This option is optional. If not given, it defaults to empty.

outgoing_timeout="60"

Default setting which defines how many seconds we will wait for a successful
connection after dialing the number. This value can be overwritten in the user
sections individually.

This option is optional. If not given, it defaults to 60 seconds.

dial_prefix=""

If anything is entered here, it will be used as a prefix which is added to any
number given tocapisuitefaxas prefix. This is e.g. very helpful if your ISDN
adapter is connected to a PBX which needs "0" for external calls. It’s also
possible to disable its usage later for a certain fax document, so setting this will
certainly not prevent you from placing internal calls without prefix.

This option is optional. If not given, it defaults to an empty prefix.

fax_stationID="<your faxID>"

Default fax station ID to use when sending a fax document. The station ID is
usually the number of your fax station in international format, so an example
would be "+49 89 123456" for a number in Munich, Germany. Station IDs
may only consist of the "+"-sign, spaces and the digits 0-9. The maximal
length is 20. This value can be overwritten in the user sections individually.

This option is mandatory.

fax_headline="<your faxheadline>"

Default fax headline to use when sending a fax document. Where and if this
headline will be presented depends on the implementation of your CAPI
driver. The headline should have a reasonable length to fit on the top of a page,
but there’s no definite limit given.

This option is optional. If not given, it defaults to an empty headline.

15

Chapter 1. Getting Started

fax_email_from="<mailaddress>"

You can set a default originator ("From"-address) for the e-mails CapiSuite
sends here.

This option is optional. If you set this to an empty string, the destinator is used
as originator (i.e. if "gernot" receives a fax, the mail comes from "gernot" to
"gernot").

The user sections

outgoing_MSN

User specific value for the corresponding global option

outgoing_timeout

User specific value for the corresponding global option

fax_stationID

User specific value for the corresponding global option

fax_headline

User specific value for the corresponding global option

fax_email_from

User specific value for the corresponding global option

fax_numbers="<number1>,<number2>,..."

A list containing the numbers on which this user wants to receive incoming fax
calls. These numbers are used to differ between users - so the same number
must not appear in more than one user section! The numbers are separated
with commas andno blanksare allowed. The first number of the list also
serves as our own number for sending a fax if outgoing_MSN is not set (see
outgoing_MSN).

If you want to use the same number for receiving fax and voice calls, pleasedo
not enter it here. Use the voice_numbers option instead (see
answering_machine.conf(5)) - the answering machine has a built in fax
detection and can also receive faxes.

16

Chapter 1. Getting Started

When this list is set to* , all incoming calls will be accepted for this user (use
with care!). This is only useful for a setup with only one user which wants to
receive any call as fax.

If for any reasonno destinationnumber is signalled for special MSNs (austrian
telecom seems to do this for the main MSN, where it is called "Global Call"),
you can use the special sign- which means "no destination number available".

This option is optional. If not given, the user can’t receive fax documents.

fax_email=""

If given, this string indicates email-addresses where the received faxes will be
sent to. More addresses are separated by commas. If it is empty, they will be
sent to the user account on the system CapiSuite is running on. The address is
also used to send status reports for sent fax jobs to. If you don’t want emails to
be sent at all, use the action option (see optionfax_action) below.

This option is optional. If not given, the mail is sent to the system account.

fax_action="MailAndSave"

Here you can define what action will be taken when a call is received.
Currently, two possible actions are supported:

MailAndSave

The received call will be mailed to the given address (seefax_email

above) and saved to thefax_user_dir (see global options)

SaveOnly

The call will be only saved to the fax_user_dir (see global options)

This option is mandatory.

17

Chapter 1. Getting Started

answering_machine.conf

Name
answering_machine.conf — configuration of CapiSuite answering machine

Description
This file holds all available config options for the answering machine provided by
the default scripts distributed with CapiSuite. It is read from
/etc/capisuite/answering_machine.conf or
/usr/local/etc/capisuite/answering_machine.conf (depending on the
installation).

It is divided into one or more sections. A section begins with the section name in
square brackets like[section] while the options arekey="value" lines.

A special section called[GLOBAL] and one section for each user called
[<username>] are required.The<username> must be a valid system user.

The [GLOBAL] -section defines some global options like pathnames and default
settings for options that can be overridden in the user-sections. The user-sections
hold all the options which belong to a particular user.

The [GLOBAL] section

audio_dir="/path/to/audiodir/"

The answering machine script uses several wave files, for example a global
announcement if the user hasn’t set his own and some spoken word fragments
for the remote inquiry and the menu presented there. These audio files are
searched in this directory. If user_audio_files is enabled (see
user_audio_files), each user can also provide his own audio snippets in
his user_dir (seevoice_user_dir).

This option is mandatory.

voice_user_dir="/path/to/userdir/"

This directory is used to save user specific data to. It must exist and the user
CapiSuite runs as must have write permission to it. It will contain one

18

Chapter 1. Getting Started

subdirectory for each configured user (named like his userid). The following
subdirectories are used below the user-specific dir:

user_dir/username/

Here the user may provide his own audio_files (see also option
user_audio_files below). The user defined announcement is also
saved here.

user_dir/username/received/

Received voice calls are saved here.

This option is mandatory.

user_audio_files="0"

If set to1, each user may provide his own audio files in his user directory (see
voice_user_dir). If set to0, only the audio_dir (seevoice_audio_dir)
will be searched.

This option is optional. If not set, it defaults to not reading own user audio files
(0).

voice_delay="15"

Sets the default value for the delay for accepting an incoming call in (in
seconds). A value of10 means that the answering machine accepts incoming
calls 10 seconds after the incoming connection request. This value can be
overwritten in the user sections individually.

This option is mandatory.

announcement="announcement.la"

Sets the default name to use for user announcements. The announcements are
searched inuser_dir/username/announcement then. If not found, a
global announcement containing the called MSN will be played. This value
can be overwritten in the user sections individually.

This option is optional. If not set, it defaults to "announcement.la".

19

Chapter 1. Getting Started

record_length="60"

Default setting for the maximum record length in seconds. This value can be
overwritten in the user sections individually.

This option is optional. If not set, it defaults to 60 seconds.

record_silence_timeout="5"

Default setting for the record silence timeout in seconds. When set to a value
greater than 0, the recording will be aborted if silence is detected for the given
amount of seconds. Set this to 0 to disable it. This value can be overwritten in
the user sections individually.

This option is optional. If not set, it defaults to 5 seconds.

voice_email_from="<mailaddress>"

You can set a default originator ("From"-address) for the e-mails CapiSuite
sends here.

This option is optional. If you set this to an empty string, the destinator is used
as originator (i.e. if "gernot" receives a voice call, the mail comes from
"gernot" to "gernot").

The user sections

voice_delay

User specific value for the corresponding global option

announcement

User specific value for the corresponding global option

record_length

User specific value for the corresponding global option

record_silence_timeout

User specific value for the corresponding global option

20

Chapter 1. Getting Started

voice_email_from

User specific value for the corresponding global option

voice_numbers="<number1>,<number2>,..."

A list containing the numbers on which this user wants to receive incoming
voice calls. These numbers are used to differ between users - so the same
number must not appear in more than one user section! The numbers are
separated with commas andno blanksare allowed. The answering machine
script does also automatic fax detection, so a fax can be sent to this number.
When this list is set to* , all incoming calls will be accepted for this user (use
with care!). This is only useful for a setup with only one user which wants to
receive any call.

If for any reasonno destinationnumber is signalled for special MSNs (austrian
telecom seems to do this for the main MSN, where it is called "Global Call"),
you can use the special sign- which means "no destination number available".

This option is optional. If not set, the user won’t receive voice calls.

voice_email=""

If given, this string indicates email-addresses where the received faxes and
voice calls will be sent to. If it is empty, they will be sent to the user account on
the system CapiSuite is running on. More addresses are separated by commas.
If you don’t want emails to be sent at all, use the action option (see
voice_action).

This option is optional. If not set, the calls are mailed to the system account.

pin="<your PIN>"

The answering machine also supports a remote inquiry function. This function
is used by entering a PIN (Personal Identification Number) while the
announcement is played. This PIN can be setup here. If you don’t want to use
the remote inquiry function, just use an empty PIN setting. The PIN doesn’t
have a maximal length - but perhaps you should not use 200 digits or you
perhaps won’t be able to remember them (I won’t at least). ;-)

This option is optional. If not set, remote inquiry is disabled.

21

Chapter 1. Getting Started

voice_action="MailAndSave"

Here you can define what action will be taken when a call is received.
Currently, three possible actions are supported:

MailAndSave

The received call will be mailed to the given address (seevoice_email

above) and saved to thevoice_user_dir (see global options)

SaveOnly

The call will be only saved to thevoice_user_dir (see global options)

None

Only the announcement will be played - no recording is done.

This option is mandatory.

1.3.4. Deleting old files
As written above, all incoming and outgoing calls will be saved on the local file
system to assure nothing gets lost. There’s no cleaning up done by CapiSuite, so
these files will stay forever on your system if you don’t clean them up from time to
time.

As it’s not very convenient to do this manually, I would advise to automate this
process. cron is predestinated for such a task. On most modern GNU/Linux
distributions, you can simply place scripts in/etc/cron.daily and they will be
called automatically once a day.

An example for a bash script you can use is included in the CapiSuite distribution.
Just copycapisuite.cron to /etc/cron.daily/capisuite and assure it has
correct permissions (owner root, executable bit set).

Now edit the filecronjob.conf and copy it to your CapiSuite configuration
directory (usually/etc/capisuite or /usr/local/etc/capisuite). It tells
the cron job how long the files should be stored in the different dirs.

The following options are available:

22

Chapter 1. Getting Started

MAX_DAYS_RCVD="<value>"

Files stored in the user receive directories which weren’t accessed in the last
<value> days are deleted. Set to0 to disable this automatic deletion.

MAX_DAYS_DONE="<value>"

Files stored in the global done directory which weren’t accessed in the last
<value> days are deleted. Set to0 to disable this automatic deletion.

MAX_DAYS_FAILED="<value>"

Files stored in the global failed directory which weren’t accessed in the last
<value> days are deleted. Set to0 to disable this automatic deletion.

1.4. Using CapiSuite together with the default
scripts

1.4.1. Receiving calls
Now this is a nice, short section. Once you have configured CapiSuite, the scripts
and started CapiSuite successfully, there’s nothing more you have to do. You’ll get
your mails as described inSection 1.3.2and that’s it. You only have to setup your
mail program to receive local mails. Enjoy! :-)

1.4.2. Doing a remote inquiry
To do a remote inquiry, please enter your PIN (seeanswering_machine.conf(5))
while the announcement of the answering machine is played. After some seconds
you will get a "voice menu" telling you how to record your own announcement for
your answering machine or how to playback the received calls.

1.4.3. Sending fax jobs
The default scripts for CapiSuite also include a commandline tool for sending faxes
calledcapisuitefax. It’s described in the next section.

23

Chapter 1. Getting Started

capisuitefax

Name
capisuitefax — sending faxes with the CapiSuite default scripts

Synopsis

capisuitefax [-q] [-n] [-u user] [-A adr] [-S subj] -d number file...

capisuitefax [-q] -a id

capisuitefax -h

capisuitefax -l

Description
The default scripts for CapiSuite come with the toolcapisuitefaxfor sending faxes.

It will be called with some parameters telling it which file to send (it currently only
supports PostScript and PDF files) and to which number. It will then enqueue the
job converted to the right format into the send queue from which it’s collected by
another CapiSuite script and sent to the destination. If the sending was completed
successfully or failed finally after trying for some time, the according user will get
an email telling him/her what has happened.

Options

-a id

Abort the job with the given id. To get a job id, use the-l option.

-A adr

The addressee of the fax. This option is (currently) only for informational
purposes and will be quoted in the sent status mail.

24

Chapter 1. Getting Started

-d number

The number which should be called (destination of the fax)

-h

Show a short commandline help

-l

Shows the jobs which are currently in the send queue.

-n

Don’t use the configured dial prefix for this job. Useful for internal jobs.

-q

Be quiet, don’t output informational messages

-S subj

A subject for the fax. This option is (currently) only for informational purposes
and will be quoted in the sent status mail.

-u user

Send fax as another user. Only allowed ifcapisuitefax is called as userroot .
This is mainly helpful for realizing extensions to e.g. do network faxing.

file...

One or more PostScript/PDF files to send to this destination. More than one
PostScript file will produce several separate fax jobs.

25

Chapter 1. Getting Started

26

Chapter 2. Users Guide
In the last chapter you’ve seen how to use the default scripts distributed with
CapiSuite. But the main goal in developing CapiSuite was not to provide a perfect
ready-to-use application. I intended to develop a tool where you can write yourown
applications very easyly. I’ll show you how to do this in the next sections.

2.1. Introduction to Python
As I thought about the scripting language I wanted to integrate into CapiSuite, my
first idea was to develop an own, simple one. But as more as I looked into it, the
more I found that a general purpose language will be much more helpful than
re-inventing every wheel that I would need. So I looked for some easy to integrate
(and to learn) language. The one I liked most was Python - and it also had a nice
documentation about embedding, so I chose it and I’m still happy about that
decision. :-)

So the first thing you’ll have to do is to learn Python. Don’t be afraid - it was
developed as a beginners language and Guido (Guido van Rossum, the inventor of
Python) has done very well in my opinion.

In the next few sections, I’ll give you a short introduction to the features of Python
you most probably will need for CapiSuite. As this shouldn’t be a manual about
Python or a tutorial in computer programming, I assume you’re already familiar
with the basic concepts of todays wide-spread procedural and object-oriented
languages.

If not, I would advise you to get and read a book for learning Python - there are
many available in different languages. The Python home page on
http://www.python.org has also nice and comprehensive manuals and tutorials
available for free.

2.1.1. Python Basics
Python supports most features you know from other common languages. Here’s the
syntax of the basic operations shown in a Python session. A Python session is
another fine feature of its interpreter: just start it by typingpython in a shell and
you’ll get a prompt:

gernot@linux:~> python
Python 2.2.1 (#1, Sep 10 2002, 17:49:17)
[GCC 3.2] on linux2
Type "help", "copyright", "credits" or "license" for more

27

Chapter 2. Users Guide

information.
>>>

As you can see, the Python prompt is>>>. If you enter commands that span
multiple lines, Python shows a second prompt:...

>>> if (1==2):
... print "Now THAT’s interesting!"
...

Ok, now let’s go on:

>>> # comments start with # at the begin of a line
>>> # now the usual first steps
>>> print "hello world"
hello world
>>> # variables
>>> a=5 # no separate declarations necessary
>>> b=a*2
>>> print b
10
>>> b=’hello’
>>> print b,’world’
hello world
>>> # python is very powerful in handling sequences
>>> a=(1,2,3) # defines a tuple (not changeable!)
>>> print a
(1, 2, 3)
>>> a[1]=2 # this must fail
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: object doesn’t support item assignment
>>> a=[1,2,3] # defines a list (changeable)
>>> a[1]=7
>>> print a
[1, 7, 3]
>>> # control structures
>>> if (b==’hello’):
... print "b is hello"
... else:
... print "????"
...
b is hello
>>> # the for statement can iterate over sequences
>>> for i in a:
... print i
...
1

28

Chapter 2. Users Guide

7
3
>>> # replace positions 1 to 3 (without 3) with 0
>>> a[1:3]=[0]
>>> a
[1, 0]
>>> # a[-i] is the i-the element counted from the back
>>> a[-1]=7; a[-2]=8
>>> a
[8, 7]

2.1.2. Blocks, Functions and Exceptions
Blocks are grouped only by identation. Nobegin , end , braces ({ , }) or the like are
needed. This sounds very uncomfortable at the first sight, but it’s really nice - you
must always structure your code exactly how youmeanit:

>>> for i in [1,2,3]:
... print 2*i
...
2
4
6
>>> i=0
>>> while (i!=3):
... print i
... i+=1
...
0
1
2

Now let’s see how to define functions and how to work with exceptions:

>>> def double_it(a):
... return (2*a)
...
>>> print double_it(9)
18
>>> print double_it("hello")
hellohello
>>>
>>> # let’s trigger a exception
>>> a=1/0
Traceback (most recent call last):

File "<stdin>", line 1, in ?

29

Chapter 2. Users Guide

ZeroDivisionError: integer division or modulo by zero
>>>
>>> # now let’s catch it
>>> try:
... a=1/0
... except ZeroDivisionError,e:
... print "You divided by zero, message was:",e
...
You divided by zero, message was: integer division or modulo by zero

2.1.3. Working with modules
Modules are a way to group functions together. They must be imported before you
can use them and they give you a new object containing all functions. Let’s play
around with some of them:

>>> import time
>>> # what is in time?
>>> dir(time)
[’__doc__’, ’__file__’, ’__name__’, ’accept2dyear’, ...]
>>> # So - what do all these functions do? Python can tell...
>>> print time.__doc__
This module provides various functions to manipulate time values.

[...]

Variables:

[...]

Functions:

time() -- return current time in seconds since the Epoch as a float
ctime() -- convert time in seconds to string
[...]

>>> # Could you please explain ctime in more detail?
>>> print time.ctime.__doc__
ctime(seconds) -> string

Convert a time in seconds since the Epoch to a string in local time.
This is equivalent to asctime(localtime(seconds)). When the time tuple
is not present, current time as returned by localtime() is used.

>>> time.time()
1044380131.186987

30

Chapter 2. Users Guide

>>> time.ctime()
’Tue Feb 4 18:35:36 2003’
>>> import os
>>> os.getuid()
500
>>> import pwd
>>> pwd.getpwuid(500)
(’hans’, ’x’, 500, 100, ’Hans Meier’, ’/home/hans’, ’/bin/bash’)

Ok, now I hope you got a small idea of Python. Have fun with it. I had... :-)

If you have further questions, I wouldreally advise you to continue with a good
book or the documentation on http://www.python.org. Please don’t ask general
Python questions on the CapiSuite lists...

2.2. A first look on the incoming and idle
scripts

In Section 1.2.1I already told you that there are two kinds of scripts used in
CapiSuite. Now let’s have a closer look on them.

2.2.1. The incoming script
Every time a call is received by CapiSuite, it will call the incoming script - to be
precise it will call a function namedcallIncoming in a python script located
somewhere on your disk. This "somewhere" was defined inSection 1.2.2,
remember?

So the given script must always define a function with the following signature:

def callIncoming(call,service,call_from,call_to):
function body
...

The parameters given by CapiSuite are:

call

reference to the incoming call. This will be used later in all CapiSuite-functions
you call to tell the system which call you mean. You’ll only pass this parameter
on to other functions - the script can’t do anything other with it (it’sopaque).

31

Chapter 2. Users Guide

service (integer)

Service of the incoming call as signalled by the ISDN, set to one of the
following values:

• SERVICE_VOICE: voice call

• SERVICE_FAXG3: analog fax call

• SERVICE_OTHER: other service not listed above

call_from (string)

the number of the calling party (source of the call) as Python string

call_to (string)

the number of the called party (destination of the call) as Python string

The first task of the function should be to decide if it wants to accept or reject the
call. If it accepts it, it will normally do something with it (receive a fax, record a
voice call, play nice announcements, ...) and then disconnect. After it has done all
necessary work, it should finish immidiately. In a later chapter, I’ll present you
some examples which should make things clearer.

Naturally, you can break down your application in more functions and perhaps more
scripts, which will be called and/or imported recursively - but the starting point is
always theincoming scriptcontainingcallIncoming . If Python and CapiSuite are
correctly installed, you should also be able to import and use any Python module.

2.2.2. The idle script
As the incoming script will only be started when a call comes in, we need another
mechanism to initiate an outgoing call. As CapiSuite can’t know when you plan to
do so, it will just call a function namedidle in the so called "idle script" in regular
intervals. For configuring the intervals and where this script is located, please refer
to Section 1.2.2.

The called function must have the following signature:

def idle(capi):
function body
...

The only parameter given by CapiSuite is:

32

Chapter 2. Users Guide

capi

This is a reference to an internal class of CapiSuite which handles the
communication with the CAPI interface. You’ll have to pass on this parameter
to some CapiSuite functions. Nothing else useful you can do with it in your
script. This parameter has internal reasons and will possibly (hopefully) go
away some day in the future. Just pass it on when told to do so for now.

Now you can do what you want in this function. Most likely, you’ll check for a job
in an email account, look for a file to send in a special directory or so and place a
call to send the job to the right destination.

Theoretically, you could also accomplish every other periodical task on your system
in the idle script - but perhaps we should leave such general things to applications
which were designed for this like cron. ;-)

As above,idle can call other functions or scripts if you like to and all Python
modules are available for import.

2.3. Used file formats
Before we’ll continue with writing scripts, please let me tell you some words about
the file formats the CapiSuite core uses.

CapiSuite always reads and saves files in the native format as they are be expected
and given by the CAPI ISDN drivers. This preserves it from having to convert
everything from and to other formats thus reducing unnecessary overhead.

As these formats aren’t that well-known and you will need special tools to convert
or view/play them, I’ll give you a short overview of how you can do this.

Most likely, your scripts will convert the special ISDN file formats to well-known
ones for sending them to you via e-mail for example. Nevertheless, I’d advice you
to store the received and sent files in the native CapiSuite formats somewhere. This
will protect you from losing data in the case the conversion fails and will help you
in debugging problems which may arise with your scripts.

All tools which I refer to here are described inSection 1.1.1.2. See there for
informations how to get them.

2.3.1. Format of voice files (inversed A-Law,
8kHz, mono)
ISDN transmits voice data as waves with a sample-rate of 8kHz in mono. To save
bandwith, a compression called A-Law is used (at least in Europe, other countries

33

Chapter 2. Users Guide

like the USA use u-Law which is quite similar to A-Law). For any reason beyond
my understanding, they use a bit-reversed form of A-Law called "inversed A-Law".

2.3.1.1. Creating A-Law files

There are two possible ways to create A-Law files.

The first one is to call your computer with your phone (either use the default
answering machine script and configure it as described in
answering_machine.conf(5)or write a simple script yourself). Now, record
whatever you want and take the created output file (when you use the default scripts
please take the file from the user_dir, not the attachment of the mail as this is
already converted) and use it.

You eventually want to trim the recorded file and remove unwanted noise and
silence at the beginning and the end. This can easily be done bysoxandplay (both
come together with thesoxpackage).

sox is used to convert a file whileplay is used to just play it. Both support the same
effects including the trim option. Both also detect what type of file you are using by
looking at the suffix of your file name. So all your inversed A-Law files should be
named likesomething.la (.la is the inversed form of.al which stands for
A-Law).

So let’s first try to find the optimal values for the trim effect by callingplay:

play myfile.la trim <start-offset> <duration>

Now play around with start-offset and duration (both given in seconds) until you
know the right values. If you found them, you can usesoxto actually produce the
needed file:

sox myfile.la outfile.la trim <start-offset> <duration>

You’ll now get a file namedoutfile.la which should contain what you want.

The second way to create an inversed A-Law file is to record a normal WAV-file
with your favourite sound-tools and convert it to the destination format usingsox.
You’ll get the best results when your WAV file already is in 8kHz, mono, 8 bit
format.sox is able to convert other waves if necessary but this usually will result in
worse quality. You should also normalize your sound file to about 50% of the
maximum amplitude.

You can convert WAV to inversed A-Law by calling (thx to Carsten Heesch for the
tip):

sox myfile.wav -r 8000 -c 1 -b outfile.la resample -ql

34

Chapter 2. Users Guide

2.3.1.2. Playing A-Law files

Again, there are two possibilities. Theplay command ofsox is able to just play the
inversed A-Law format without any conversion. Just callplay with the filename as
parameter:

play myfile.la

But you can also use sox to convert the A-Law files to the more common WAV
format by just invoking:

sox myfile.la outfile.wav

The createdoutfile.wav can be played by nearly any audio player without
problems.

2.3.2. Format of fax files (Structured Fax Files)
CAPI-compliant drivers will expect and provide fax files in a so called Structured
Fax File (SFF). As this seems to be a CAPI-specific format, there are not much
tools out there for GNU/Linux which are capable of handling it. Finally I found
some small tools written by Peter Schäfer, which we can use here.

CapiSuite is also able to receive color fax files which will be stored in a special file
format I called CFF.

2.3.2.1. Creating a SFF

In current Ghostscript releases, a patch from Peter has been included to produce SF
files. To see if your Ghostscript already supports it, entergs --helpand look for the
so-calledcfax-device in the long device list presented to you. If it’s not listed, you
have to take a newer Ghostscript or recompile it, sorry. I don’t know any other way
to produce SFF currently.

You need a PostScript file (as produced by nearly every Linux program when you
choose "print to file") first. Now you can call GhostScript to convert it to a SFF:

gs -dNOPAUSE -dBATCH -sDEVICE=cfax -sOutputFile=outfile.sff file.ps

If you’re not sure if it worked you can usesffview as described below.

35

Chapter 2. Users Guide

2.3.2.2. Viewing / converting from SFF

To simply view a received SFF, you can use thesffview program. It’s a simple but
useful tool for viewing SF files without the need to convert them. Just start it and
you will get a GUI where you can open the desired file.

If you want to convert a fax file to a more common format, I recommend using
sfftobmp. It supports quite some output formats like JPEG, TIFF, PBM or BMP. I
prefer multipage TIFF files as this is the only format being able to store several
pages in one file. To convert SFF to multipage TIFF, call:

sfftobmp -tif myfile.sff outfile.tiff

This will give you a TIFF file which you can convert now to nearly any other useful
format with the TIFF tools, for exampletiff2ps.

2.3.2.3. Color faxes - the CFF format

There exists an enhancement to the fax standard which allows to transfer documents
in color. It’s not very widely used, but as some people wanted it for CapiSuite, I
added support for receiving this faxes with CapiSuite.

The CFF format (I don’t know if this is an official name for the format) seems to be
some sort of JPEG file with a special encoding. Most programs who can handle
JPEG files should be able to open it. Perhaps you must rename it from.cff to
.jpg first, before it will be recognized.

Currently, I don’t know a nice way to create this format manually. Therefore,
CapiSuite currently only supports the reception of these files. If someone knows
more about it or knows the JPEG standards well, please contace me!

2.4. Tutorial: writing an incoming script
In this section, I’ll show you how to code your own incoming script step by step. We
begin with simply accepting every incoming call, playing a beep. The last example
is a very simple but useful answering machine with fax recognition and receiving.

2.4.1. Basics and a really dumb answering
machine.
Let’s start with a very simple case: accept all incoming calls, beep and record

36

Chapter 2. Users Guide

something so we have an audio file to play with later. First of all, create a new
directory somewhere which must be writable toroot . We also need some test audio
file for sending it. Let’s take the beep which is distributed with CapiSuite.

mkdir capisuite-examples
chmod 777 capisuite-examples # make it world-writeable
cd capisuite-examples
cp /usr/local/share/capisuite/beep.la .

Perhaps you must change the path in the last line to reflect your installation.

Now copy and paste the example shown here to a file calledexample.py in this
directory. Don’t forget to change themy_path -setting.

Example 2-1. example.py

import capisuite ➊

my_path="/path/to/the/just/created/capisuite-examples/" ➋

def callIncoming(call,service,call_from,call_to): ➌

capisuite.connect_voice(call,10) ➍

capisuite.audio_send(call,my_path+"beep.la") ➎

capisuite.audio_receive(call,my_path+"recorded.la",20,3) ➏

capisuite.disconnect(call) ➐

Let’s walk through the script line by line:

➊ Import the capisuite module which holds all CapiSuite specific functions. All
CapiSuite objects (functions, constants) in this module can be referenced by
capisuite.objectname now. You could also do a "from capisuite

import * ", which will insert all objects in the current namespace - but this
isn’t recommended as they may collide with other global objects.

Note: The imported module capisuite isn’t available as extra module, so
you can’t do this in an interactive Python session. It’s included in the
CapiSuite binary and only available in scripts interpreted by CapiSuite.

➋ Please change this to the real path you use for running these examples.

➌ Define the necessary function as explained inSection 2.2.1

➍ That’s the first CapiSuite function we use: it accepts the pending call. The first
parameter tells CapiSuite which call you mean. This parameter is necessary for
nearly all CapiSuite functions. Ok, we only have one call now - but please think
about an incoming script which also wants to place an outgoing call at the same

37

Chapter 2. Users Guide

time (for example to transfer a call). In this case CapiSuite wouldn’t know
which call you mean - so you must pass the reference you got to all connection
related functions.

You can also tell CapiSuite to wait for an arbitrary time before accepting a call -
that’s what the second parameter is used for. So this script will wait 10 seconds
before connecting with the caller. Don’t think this parameter is useless and you
could call a Python function (liketime.sleep()) to wait instead. This won’t
work for any delay longer than 4 (or 8, depending on your ISDN setup) seconds
as the call will timeout if an ISDN device doesn’t "pre-accept" it by telling your
network provider that it’s ringing. CapiSuite will do so if necessary - so please
just use this parameter.

➎ This call should be fairly self-explainig. Send the audio file stored inbeep.la .

➏ Record an audio file for maximal 20 seconds - stopping earlier if more than 3
seconds of silence are recognized.

➐ Last, but not least - disconnect. Hang up. Finish. It’s over.

CapiSuite configuration must be changed to use the just created script. Do this by
editing yourcapisuite.conf and replacing theincoming_script value by the
path to the file you just created (seeSection 1.2.2) and restart CapiSuite.

Now test it: call any number which ends up at your ISDN card - if you have
connected it to your ISDN interface, than any number (MSN) will do - if it’s
connected to a PBX, then you must call a number which was configured for the card
in your PBX.

You should hear a beep and then you can speak something into this primitive
answering machine. Please don’t hangup before the script does as this case isn’t
handled yet. Just wait 3 seconds after saying something - it should disconnect after
this period of silence.

If it doesn’t work, you perhaps made an error when copying the script. In this case,
please have a look at the CapiSuite log and error log, which you’ll find in
/var/log/capisuite or /usr/local/var/log/capisuite if you haven’t
changed the path.

A good trick to check for syntax errors is also to run your script through the normal
Python interpreter. Do this by callingpython /path/to/your/example.py. Naturally,
it will complain about theimport capisuite as this is no standard Python
module. But before it does this, it will check the syntax of your script - so if you get
anyothererror, please fix it and try again. If you only get

Traceback (most recent call last):
File "../scripts/incoming.py", line 16, in ?

import capisuite,cs_helpers
ImportError: No module named capisuite

38

Chapter 2. Users Guide

then your script has a correct syntax.

I hope you got your script working by now - if not, don’t hesitate to ask on the
CapiSuite mailing listsif you have read a Python tutorial before.

In the next section we want to use an announcement, so please record some words
with this simple script and move the created filerecorded.la to announce.la .

2.4.2. Improving it to a useful (?) state
Well, it’s really not nice that the caller mustn’t hangup - and it’s even worse that we
do accept all incoming calls - perhaps by taking away your mothers important calls?

Let’s quickly improve this.

Example 2-2. example.py, improved

import capisuite

my_path="/path/to/the/just/created/capisuite-examples/"

def callIncoming(call,service,call_from,call_to):
try: ➊

if (call_to=="123"): ➋

capisuite.connect_voice(call,10)
capisuite.audio_send(call,my_path+"announce.la") ➌

capisuite.audio_send(call,my_path+"beep.la")
capisuite.audio_receive(call,my_path+"recorded.la",20,3)
capisuite.disconnect(call)

else:
capisuite.reject(call,1) ➍

capisuite.disconnect(call) ➎

except capisuite.CallGoneError:
capisuite.disconnect(call) ➏

➊ CapiSuite will tell the script that the other party has disconnected by raising an
exception namedCallGoneError . So you should always put your code in a
try statement and catch the raised exception at the end of your script (or
perhaps earlier if needed). This exception can be raised by call to a CapiSuite
command.

➋ Have a look at the called number (please replace123 with the number
CapiSuite should accept)...

➌ Play the announcement we recorded in the last section. If you don’t like it,
simply record a new one and move therecorded.la again toannounce.la .

39

Chapter 2. Users Guide

➍ Ignore the call. The second parameter tells the exact reason for the reject - you
can ignore a call (any other ISDN device or phone will still be ringing for that
number) by using1, actively disconnect by using2 or any error condition which
is available in the ISDN specification (seeSection B.1.2for available codes).

➎ You always have to calldisconnect at the end of your script, as this will wait
for the end of the call, whilereject only initiates the call reject. Otherwise
you’ll get a warning in the error log.

➏ This is the exception handler forCallGoneError - the exception CapiSuite
raises when the call is disconnected by the other party. You should also call
disconnect here to wait until the call is completely disconnected.

Save this toexample.py again and test it. It’s not necessary to restart CapiSuite as
all scripts will be read at each time they’re executed. Now you’re allowed to hang
up, too ;-).

2.4.3. Using sensible file names
We always used the same name to save the recorded message to which clearly isn’t
reasonable. We should really choose a new name for every new call. This isn’t as
simple as it may sound - you must assure that the used algorithm will also work for
multiple calls arriving at the same time. Fortunately, the helpful programmer of
CapiSuite had the same problem and so we can use the code he (hmmm... I?) has
written.

The Python modulecs_helpers.py contains some useful functions which are
needed by the default scripts provided with CapiSuite but may be also helpful for
the use in your own scripts. It contains the functionuniqueName which does
exactly what we need here. The syntax is:

filename=cs_helpers.uniqueName(directory,prefix,sufix)

The function will find a new unique filename in the givendirectory . The created
filename will be "prefix-XXX.suffix " whereXXX is the next free number started
at 0. The next free number is remembered in a fileprefix-nextnr and the created
name is returned.

We can simply add this call to our script:

Example 2-3. using unique filenames

import capisuite ,cs_helpers

my_path="/path/to/the/just/created/capisuite-examples/"

40

Chapter 2. Users Guide

def callIncoming(call,service,call_from,call_to):
try:

if (call_to=="123"):
filename=cs_helpers.uniqueName(my_path,"voice","la")
capisuite.connect_voice(call,10)
capisuite.audio_send(call,my_path+"announce.la")
capisuite.audio_send(call,my_path+"beep.la")
capisuite.audio_receive(call, filename ,20,3)
capisuite.disconnect(call)

else:
capisuite.reject(call,1)

except capisuite.CallGoneError:
capisuite.disconnect(call)

If you’re interested in other functions whichcs_helpers.py defines, just have a
look at the reference atSection 2.6.4.

2.4.4. Automatic fax recognition and receiving
As last step, I want to show you how fax recognition and receiving works and how
to switch from voice to fax mode.

Here’s the last and most complicated example of this section. It’ll introduce four
new CapiSuite functions and shows how to split up the functionality in another
function which is used bycallIncoming . There are much changes which are
described below - but most of them should be nearly self-explanatory. So I don’t
think this last step is too big. And you don’t want to read 10 more steps here, do
you? ;-)

Example 2-4. Adding fax functions

import capisuite,cs_helpers,os ➊

my_path="/path/to/the/just/created/capisuite-examples/"

def callIncoming(call,service,call_from,call_to):
try:

if (call_to=="123"):
filename=cs_helpers.uniqueName(my_path,"voice","la")
capisuite.connect_voice(call,10)
capisuite.enable_DTMF(call) ➋

capisuite.audio_send(call,my_path+"announce.la",1) ➌

capisuite.audio_send(call,my_path+"beep.la",1)
capisuite.audio_receive(call,filename,20,3,1)
dtmf=capisuite.read_DTMF(call,0) ➍

if (dtmf=="X"): ➎

41

Chapter 2. Users Guide

if (os.access(filename,os.R_OK)): ➏

os.unlink(filename)
faxIncoming(call) ➐

capisuite.disconnect(call)
else:

capisuite.reject(call,1)
except capisuite.CallGoneError:

capisuite.disconnect(call)

def faxIncoming(call):
capisuite.switch_to_faxG3(call,"+49 123 45678","Test headline") ➑

filename=cs_helpers.uniqueName(my_path,"fax","sff")
capisuite.fax_receive(call,filename) ➒

➊ In this example, we need a normal Python module for the first time. Theos

module holds functions for all kinds of operation system services and is needed
for deleting a file here.

➋ DTMF is the abbreviation for Dual Tone Multi Frequency. These are the tones
which are generated when you press the digits on your phone and are usually
used for dialling. They’re also sent by modern fax machines before the
transmission starts. Therefore, the same functions can be used for recognizing
pressed digits and fax machines.

Before any DTMF is recognized by CapiSuite, the according function must be
enabled byenable_DTMF .

➌ All audio send and receive functions support abortion when a DTMF tone is
recognized. This is enabled by passing "1" as last parameter. It will also prevent
the function from starting if a DTMF char was recognizedbeforebut not yet
read by the script.

➍ CapiSuite stores all received DTMF signals in a buffer from where they can be
read at any time. Reading is done byread_DTMF which also clears the buffer. It
will return all received characters in a string, so if the caller presses "3","5","*",
you’ll get "35*".

The0 tells CapiSuite not to wait for DTMF signals - if none are available, it will
simply return an empty string. It’s also possible to specify that it should wait for
a certain amount of time or until a certain number of signals have been received.

Note: Please note that it’s not necessary to check for received DTMF after
each audio send or receive function. Simply enable the DTMF abortion in
all commands in a block and check for received tones after the whole
block.

42

Chapter 2. Users Guide

➎ Fax machines send a special tone which is represented as "X" by the CAPI. So if
you receive the string "X", a fax machine is calling and we should start our fax
handling routines.

➏ Possibly, the announcement was so short that the recording has started already
before the fax is recognized. We won’t save a file containing only the fax beep
and so we test if it was created (os.access checks for the existence of a file)
and delete it if needed by callingos.unlink .

➐ Fax handling was realized in a separate function which is called here.

➑ So far, this connection is in voice mode (which was set by using
connect_voice). If we want to receive a fax now, the mode must be changed
to fax. This is done byswitch_to_faxG3 . As the fax protocol needs some
additional parameters, they must be given here. The first string is the so called
fax station IDwhich is sent to the calling fax and shown in it’s protocol, while
the second one is afax headline. This headline is mainly used for sending faxes.
To be honest, I personally don’t know if it has any sense to specify this if you
only want to receive a fax. But it surely won’t harm ;-). If someone knows this
for sure, please tell me.

Note: If you want to use an own number solely for fax purposes, you
should not use switch_to_faxG3 . Use connect_faxG3 instead.

➒ After the connection has been set to fax mode succesfully, we can receive the
fax document finally. The used functionfax_receive gets a new name which
is again created by callingcs_helpers.uniqueName as above.

Congrats. You’ve finished my small tutorial. Now it’s up to you - you can play with
the created script and try to make it more complete. There’s still much to do -
sending received calls to a user via e-mail, log connections, ... If you want to
complete this script,Section 2.7will be helpful. You can also read on here to have a
short look on the idle scripts, followed by a quick overview of the structure of the
default scripts shipped with CapiSuite.

2.5. Example for an idle script
After we’ve seen how to handle incoming calls, a very short introduction to initiate
outgoing calls by using the idle script will follow.

As written before, the idle script will be called by CapiSuite in regular intervals
allowing you to look for stored jobs somewhere and sending them to the
destinations.

43

Chapter 2. Users Guide

The example shown here will look for a filejob-XXXX.sff in the example
directory we created in the last section. This file will be faxed to the destination
indicated byXXXX. If you have no valid destination where you can send test faxes
to, how about using CapiSuite as source and destination at the same time? In this
case, replaceXXXXby the number your incoming script handles. This won’t work if
your ISDN card can’t handle two fax transfers in parallel (some old AVM B1 cards
have this limitation, for example).

We now need one or more fax files in the SFF format for our tests, so please create
some with a name like the one shown above. If you don’t know how to do this,
please refer toSection 2.3.2.1.

If I want to develop a CapiSuite script but am not really sure how to do it, I often
start by coding a normal script which I can test without CapiSuite. So let’s create a
script which searches the files and extracts the destination numbers first. If this
works, we can continue by adding the CapiSuite specific calls later.

Example 2-5. idle_example.py

import os,re ➊

my_path="/path/to/your/capisuite-examples/"

files=os.listdir(my_path) ➋

files=filter (lambda s: re.match("job-.*\.sff",s),files) ➌

for job in files: ➍

destination=job[4:-3] ➎ # Hmmm.. Is this right?
print "found",job,"to destination",destination

➊ We know theos module already.re provides functions for searching for regular
expressions. If you don’t know what regular expressions are, please read for
example the Python documentation for there -module or some other
documentation about them. It’s too complicated to explain it here.

➋ os.listdir returns the files in a given directory as list.

➌ This line is a little bit more tricky. It filters out all filenames which doesn’t
follow the rulestarting with "job-", then any number of chars, ending with ".sff"
from the list. This is done by thefilter function. The function expects the
name of a function which checks the rule as first parameter and the list to filter
(files) as second one.

We could now define a new function and use its name here, but thelambda

keyword allows a much more elegant solution: it defines a "nameless function"
with the parameters . The function body follows directly behind and consists of
a call tore.match which checks if the given strings matches the expression.

44

Chapter 2. Users Guide

➍ Iterate over all found filenames.

➎ The destination is extracted from the given filename by using string indexes.

Now, save the script asidle_example.py in our example dir and run it by calling
python idle_example.py.

If you have provided SFF files with the right names they should be shown line by
line now. But... Obviously something doesn’t work right here. The destination
includes the ". ". Indeed, I’ve made a mistake when indexing the string. It should be
destination=job[4:-4] instead of[4:-3] . So let’s change that and test again.
It should work now. That’s the reason why I prefer to code such scripts outside of
CapiSuite first. Debugging is much faster this way...

As we know now that the basic parts work, we can add the real communication
functions.

Please save this example toidle_example.py in your example directory, again.

Example 2-6. idle_example.py, version for CapiSuite

import os,re ,capisuite

my_path="/path/to/your/capisuite-examples/"
my_number="678" ➊

my_stationID="+49 123 45678"
my_headline="example headline"

def idle(capi): ➋

files=os.listdir(my_path)
files=filter (lambda s: re.match("job-.*\.sff",s),files)

for job in files:
destination=job[4:-4]
capisuite.log("sending "+job+" to destination "+destination,1) ➌

try:
(call,result)=capisuite.call_faxG3(capi,1,my_number,destination,

60,my_stationID,my_headline) ➍

if (result!=0): ➎

capisuite.log("job "+job+" failed at call setup with reason "
+str(hex(result)),1)

os.rename(my_path+job,my_path+"failed-"+job) ➏

return ➐

capisuite.fax_send(call,my_path+job) ➑

(result,resultB3)=capisuite.disconnect(call) ➒

except capisuite.CallGoneError:
(result,resultB3)=capisuite.disconnect(call)

if (result in (0,0x3400,0x3480,0x3490) and resultB3==0): (10)

45

Chapter 2. Users Guide

capisuite.log("job "+job+" was successful",1)
os.rename(my_path+job,my_path+"done-"+job)
return

else:
capisuite.log("job "+job+" failed during send with reasons "

+str(hex(result))+","+str(hex(resultB3)),1)
os.rename(my_path+job,my_path+"failed-"+job)

➊ Some parameters for sending the fax are set here.my_number is your own
number which is used for sending the fax.my_stationID is the fax station ID,
which will be transmitted to the other fax machine and shown on the sent fax
page. Only digits and "+" are allowed. You can also define a short text which
will show up in the fax headline infax_headline .

➋ As explained inSection 2.2.2, you have to define a function calledidle which
will be executed in regular intervals by CapiSuite then. So all code has been
moved to this function.

➌ We can’t print messages to stdout as the script will run in the context of a
daemon. So CapiSuite provides functions for creating entries in the CapiSuite
log file. log expects at least two parameters: the message and a log level. This
level corresponds to the log level setting in the global CapiSuite configuration
(seeSection 1.2.2). If the level of the message isless or equalthe level set in the
configuration, it is printed to the logs. So you can insert messages for debug
purposes which aren’t printed to the logs in normal operation by using levels
higher than 1.

➍ This function initiates an outgoing call using the fax service. The parameters
are:

• reference to the Capi object you got from CapiSuite (parameter toidle).

• the (number of the) controller to use for outgoing calls. The first controller
has always number "1".

• own number to use for the outgoing call

• destination number to call

• maximum time to wait for a successful connection in seconds

• the fax station ID

• fax headline

The function returns a tuple containing a reference to the created call and an
error value.

➎ This block checks if the connection was successful. For a detailled description
of possible error values, please see theSection 2.7. 0 means "everything was ok,
call is established".

46

Chapter 2. Users Guide

➏ If the call wasn’t successful, rename the fax file to prevent the script from
sending the same file over and over.

➐ Don’t forget to exit theidle function if the call couldn’t be established!

➑ Another very simple CapiSuite command: send the given file as fax document.

➒ We previously ignored the reasonswhya call was disconnected. Now we have
to analyze them because we need to know if the file was transferred succesful.
Therefore,disconnect returns a tuple containing of the physical and logical
error value. Every ISDN connection contains one physical and (at least) one
logical connection. One could imagine the physical connection as "the wire"
connecting us to our destination, while the logical connection refers to the fax
protocol which uses this "wire". You have to look on both values to see if
everything was ok.

(10)Allowed values for the physical disconnection are 0,0x3400,0x3480 and
0x3490. These all mean "no error occured, call was disconnected normally".
The logical value may only be 0 if everything went ok. For further information
on error values, please refer toSection 2.7.

After you’ve saved the file and changed the default values to your own
configuration, please alter the value ofidle_script in the CapiSuite
configuration to point to this script as described inSection 1.2.2.

Restart CapiSuite and watch the logs. Some minutes later, thejob-XXX.sff files
should’ve been sent and renamed to eitherdone-job-XXX.sff or
failed-job-XXX.sff . If the job failed, please consult the error log and the error
values explained inSection 2.7andAppendix B.

Hopefully, this tutorial helped you in understanding how to code your own scripts.
Please continue with changing the examples or the files distributed with CapiSuite
(readSection 2.6before). You will find a complete reference of the available
commands inSection 2.7.

If you have any trouble in getting your scripts up and running, please use the
CapiSuite mailing lists. And don’t forget to have fun. ;-)

2.6. Structural overview of the default scripts

2.6.1. incoming.py
The incoming script handles all incoming connections. It reads two configuration
files containing all necessary data which were described in detail inSection 1.3.3.
The overall structure will be described here giving you an overview of how it is
implemented.

47

Chapter 2. Users Guide

Firstly (after importing some necessary modules), it defines the necessary function
callIncoming which will call all other functions if needed.

2.6.1.1. function callIncoming

This function starts with a call tocs_helpers.readConfig to read the
configuration. It then iterates through all sections representing the configured users
(exceptGLOBAL) to see if the called number belongs to any user. If a match is found,
the user and the defined service are saved tocurr_user andcurr_service .

If no match was found (curr_user is empty), the call is rejected and the function
returns. Otherwise the directory to use for incoming fax or voice data is determined
and created if not existing yet.

The last thing the function does, is to produce a log entry, accept the call with the
right service (fax or voice) and call eitherfaxIncoming or voiceIncoming . It
also defines an exeception handler forcapisuite.CallGoneError .

2.6.1.2. function faxIncoming

faxIncoming is quite straight forward: it creates a uniqe filename, calls
capisuite.fax_receive , disconnects and logs the disconnection reasons. Then
it checks if a fax have been really received succesfully (i.e. if the file exists). If yes,
it creates a description file for it,chown’s the file to the right user and sends the file
as mail.

2.6.1.3. function voiceIncoming

voiceIncoming has much more features to accomplish like fax recognition and
switching to fax mode, starting a remote inquiry etc.

It starts by determining the directory to use and creating a unique filename. Also,
the PIN for remote inquiry is saved to a private variable. There are two possibilites
now: the user has already an own announcement - in this case it’s played now.
Otherwise, a predefined announcement containing of a general announcement and
the number which was called is played. If recording a message wasn’t disabled (by
settingvoice_action to None), it starts now after a beep.

All audio_send andaudio_receive calls used so far had DTMF abortion
enabled and so the script "falls through" all these calls after a DTMF signal was
recognized. After them,read_DTMF is used to see if any such signal have been
found. "X" represents the fax tone and triggers a switch to fax protocols and a call to
faxIncoming . Any other received signals are interpreted to be a part of the PIN for
remote inquiry and so a loop which waits 3 seconds after each tone for the next one

48

Chapter 2. Users Guide

is entered. If a valid PIN is entered, it starts theremoteInquiry . After three wrong
attempts, it will disconnect.

After disconnecting and logging, a description file is written (if the recorded file
exists), both files will bechown’ed to the right user and the recorded message will
be mailed to him/her.

2.6.1.4. function remoteInquiry

TheremoteInquiry starts by creating a lock file and acquiring an exclusive lock
on it to prevent two parallel remote inquiries for the same user. If the lock can’t be
acquired, an error message is played and the function returns. If locking has
succeeded, a list of the recorded voice calls is compiled by listing the user directory,
filtering and sorting it. Now, a file calledlast_inquiry is read when it exists. It
contains the number of the last heard message. With this information, the old
messages can be filtered out to a separate list and thus the caller can listen to
messages he doesn’t know already first.

The number of new messages is said, followed by a small menu where the caller
can choose to either record an announcment or hear the recorded messages. If he
chooses announcement recording, the functionnewAnnouncement is called,
otherwiseremoteInquiry will continue.

Now, a loop will first iterate over the new and then the all old messages. It starts by
telling the caller how much messages have been found. Then all messages will be
played, repeating the following steps for each one:

• read the description file of the current message

• play an information block containing the current message number, source,
destination, date and time of the call.

• play the message

• provide a menu where the caller can go on to the next or last message, repeat the
current message or delete it

At the end, the caller will be informed that no more messages are available and the
connection will be finished, followed by releasing the lock file and deleting it.

2.6.1.5. function newAnnouncement

newAnnouncement presents some instructions to the caller first. Then, the new
announcement will be recorded to a temporary file. To give the user the ability to
check it, it will be played, followed by a menu allowing him/her to save it or to
repeat the recording. If the user has chosen to save it, it will be moved from the

49

Chapter 2. Users Guide

temporary file toannouncement.la in the users voice directory andchown’ed to
him/her. The call will be finished with an approval to the caller that it has been
saved succesfully.

2.6.2. idle.py
The idle script is responsible for collecting jobs from the send queues (where
they’re stored bycapisuitefax) and sending them to the given destinations. It reads
its configuration from the files presented inSection 1.3.3, too.

2.6.2.1. function idle

After reading the configuration by callingcs_helpers.readConfig and testing
for the existence of the archive directories needed, the userlist is compiled from the
list of available sections.

For each user who has a valid fax setup (otherwise this user will be skipped), the
send queue will be looked at. If the necessary queue directories don’t exist, they’ll
be created. After that, a list calledfiles with the names of all files in the send
queue is created and filtered to only contain fax jobs.

For each found job, a security check is done to see if it was created by the right user.
If this check was successful, a lock file is created and a lock on it is acquired. This
prevents thecapisuitefaxcommand to abort a job while it is in transfer. After that,
the existence of the file is checked (perhaps the job has been cancelled before we
could acquire the lock?).

Now, the description file for this job is read and the starttime is checked. If it’s not
reached, the script will go on with the next job. Otherwise, some parameters are
taken from the configuration and a log message is created. The file is transferred by
calling sendfax . The results are stored and logged. If the job was successful, it is
moved to the done dir and an approval is mailed to the user. If it wasn’t succesful,
the delay interval will be determined from the configuration and the new starttime is
calculated by increasing the old starttime by this interval. A counter for the used
tries is increased and the description file is rewritten with the new values. If the
number of tries exceeds a given maximum, the job is moved to the failed dir and the
error is reported to the user by mail.

Finally, the lock file will be unlocked and deleted.

2.6.2.2. function sendfax

This function handles the send process. After determining the MSN to use from

50

Chapter 2. Users Guide

either theoutgoing_MSN setting or from thefax_numbers list, a call to the
destination is initiated. If it fails, the function returns; otherwise the file will be sent
and the connection finished.

2.6.2.3. function movejob

This is a small helper function used for moving a job and its accompanying
description file to another directory.

2.6.3. capisuitefax
capisuitefaxallows to enqueue fax jobs, list the current queue and abort jobs. It’s
not used directly by the CapiSuite system - it’s a frontend for the users send queue
directory. It has several commandline options - for an explanation of its usage,
please refer toSection 1.4.3.

There are three helper functions defined first.usage prints out a small help if
"--help " or "-h " was given as parameter or if a parameter isn’t understood.
showlist gets a listing from the users send queue directory and prints it nicely
formatted as table.abortjob removes a job from the queue. It does this safely by
using a lock file to not interfere with the sending process.

The main code of this script checks the given commandline options first. It sets
several variables to the given values. After some checks of the validity of the
options, the rights of the user to send faxes and the existence of the necessary
directories, it will fulfill the requested task. Either,listqueue will be called to
show a listing of active jobs,abortjob to abort a job or the given files are
processed and put to the queue.

To process a job, the existence of it and its format will be checked. Currently, only
PostScript is allowed. The CapiSuite core itself only supports the SF format.
Therefore, the files are coverted from PostScript to it by callingghostscript.
Finally, the description file for this job is created containing the given parameters
like the destination number.

2.6.4. cs_helpers.py
Thecs_helpers.py script contains many small helper functions used in the other
scripts. These are:

51

Chapter 2. Users Guide

readConfig

Reads either the configuration files described inSection 1.3.3or an arbitrary
config file like the description files accompanying each received file or job to
send.

getOption

Get an option from the given user section and fall back to the global section if
it’s not found.

getAudio

Get an audio file from the users directory or fall back to the global CapiSuite
directory.

uniqueName

Construct a new file name in a given directory by using a given prefix & suffix
and adding a counter. See alsoSection 2.4.3.

sendMIMEMail

Send an e-mail with attachment to a given user. Supports also automatic format
conversion SFF -> PDF and inversed A-Law -> WAV.

sendSimpleMail

Send a normal e-mail without attachment to a given user.

writeDescription

Create a description file which can be read byreadConfig later.

sayNumber

Supports saying a number using various wave fragments. Works only for
german output currently.

For a detailled description of each function and its usage, please have a look at the
script file itself. There are comments describing each function in detail.

2.7. CapiSuite command reference
CapiSuite provides an internal Python module calledcapisuite which can be
imported as usual byimport capisuite . Internal means, it’s compiled in the
CapiSuite binary and will only be found if CapiSuite interpretes the script.

52

Chapter 2. Users Guide

A complete reference of all functions of this module is auto-generated from the
CapiSuite sources and so you’ll find it in the reference manual available locally on
../reference/group__python.html or online on
http://www.capisuite.de/reference/group__python.html.

As it doesn’t make sense to duplicate the information here, please refer to it.

Note: These functions are implemented in C internally and so the reference
document shows the C function header instead of the header how it would be
defined in Python. So please ignore the function header shown there and only
have a look at the description and the parameters given under args. If this is
too confusing, please tell me and perhaps I’ll find a better way to auto-create
this document someday then...

53

Chapter 2. Users Guide

54

Appendix A. Acknowledgements
CapiSuite started as diploma thesis in winter semester 2002/03. I want to thank the
following people for helping me with it:

• Karsten Keil from SUSE Linux AG (my tutor for the thesis) for his invaluable
support and patience when answering me many ISDN questions, doing tests and
for his suggestions concerning the architecture of CapiSuite

• Prof. Dr. Wolfgang Jürgensen from the UAS Landshut (my tutor from the UAS)
for his help in ISDN questions during the thesis and for teaching me the ISDN
basics in his lecture before

• Prof. Dr. Peter Scholz from the UAS Landshut (second tutor from the UAS) for
his support and his suggestions

• my girl friend Claudia and her sister Bethina for proof-reading my thesis

• Peter Reinhart from SUSE for proof-reading my thesis

• many colleagues from SUSE for helping me with technical problems, esp.
Andreas Jaeger, Andreas Schwab, Thorsten Kukuk and Andi Kleen

• Achim Bohnet for being the first one from the community trying to compile the
CVS version and making me quite some suggestions how to improve it

55

Appendix A. Acknowledgements

56

Appendix B. CAPI 2.0 Error Codes
The CAPI interface used here has its own coding of standard ISDN error codes.
Most of the errors described inSection B.2are only important for developers of the
CapiSuite core. As user, you only need to know the codes shown inSection B.1as
they’ll be used in the CapiSuite Python functions likecapisuite.disconnect .

You’ll find a list of all the codes and a short description below. A detailled
description of the CAPI codes can be found in the CAPI specification available at
http://www.capi.org.

All numbers are givenhexadecimal!

B.1. CAPI errors describing connection
problems

All errors described here indicate some problem with the connection. These errors
are also important for script writers as they’re returned by some CapiSuite Python
functions. SeeSection 2.7for further details.

B.1.1. Protocol errors
Protocol errors indicate some problem during data transfer. Only messages for the
transparent (voice) and fax protocols spoken by CapiSuite are shown here.

• 0 - Normal call clearing, no error

• 3301 - Protocol error layer 1 (broken line or B-channel removed by signalling
protocol)

• 3302 - Protocol error layer 2

• 3303 - Protocol error layer 3

• 3304 - Another application got that call

• 3311 - T.30 (fax) error: Connection not successful (remote station is not a G3 fax
device)

• 3312 - T.30 (fax) error: Connection not successful (training error)

• 3313 - T.30 (fax) error: Disconnect before transfer (remote station doesn’t
support transfer mode, e.g. wrong resolution)

• 3314 - T.30 (fax) error: Disconnect during transfer (remote abort)

57

Appendix B. CAPI 2.0 Error Codes

• 3315 - T.30 (fax) error: Disconnect during transfer (remote procedure error)

• 3316 - T.30 (fax) error: Disconnect during transfer (local transmit data
underflow)

• 3317 - T.30 (fax) error: Disconnect during transfer (local receive data overflow)

• 3318 - T.30 (fax) error: Disconnect during transfer (local abort)

• 3319 - T.30 (fax) error: Illegal parameter coding (e.g. defective SFF file)

B.1.2. ISDN error codes
These codes are ISDN error codes which are described by the ETS 300 102-01
standard in more detail. It’s currently available for private use at http://www.etsi.org
without fee. For details how the ISDN codes are mapped to the CAPI numbers see
the CAPI specification, parameter "Info".

• 3400 - Normal termination, no reason available

• 3480 - Normal termination

• 3481 - Unallocated (unassigned) number

• 3482 - No route to specified transit network

• 3483 - No route to destination

• 3486 - Channel unacceptable

• 3487 - Call awarded and being delivered in an established channel

• 3490 - Normal call clearing

• 3491 - User busy

• 3492 - No user responding

• 3493 - No answer from user (user alerted)

• 3495 - Call rejected

• 3496 - Number changed

• 349A - Non-selected user clearing

• 349B - Destination out of order

• 349C - Invalid number format

• 349D - Facility rejected

• 349E - Response to STATUS ENQUIRY

• 349F - Normal, unspecified

58

Appendix B. CAPI 2.0 Error Codes

• 34A2 - No circuit / channel available

• 34A6 - Network out of order

• 34A9 - Temporary failure

• 34AA - Switching equipment congestion

• 34AB - Access information discarded

• 34AC - Requested circuit / channel not available

• 34AF - Resources unavailable, unspecified

• 34B1 - Quality of service unavailable

• 34B2 - Requested facility not subscribed

• 34B9 - Bearer capability not authorized

• 34BA - Bearer capability not presently available

• 34BF - Service or option not available, unspecified

• 34C1 - Bearer capability not implemented

• 34C2 - Channel type not implemented

• 34C5 - Requested facility not implemented

• 34C6 - Only restricted digital information bearer capability is available

• 34CF - Service or option not implemented, unspecified

• 34D1 - Invalid call reference value

• 34D2 - Identified channel does not exist

• 34D3 - A suspended call exists, but this call identity does not

• 34D4 - Call identity in use

• 34D5 - No call suspended

• 34D6 - Call having the requested call identity has been cleared

• 34D8 - Incompatible destination

• 34DB - Invalid transit network selection

• 34DF - Invalid message, unspecified

• 34E0 - Mandatory information element is missing

• 34E1 - Message type non-existent or not implemented

• 34E2 - Message not compatible with call state or message type non-existent or
not implemented

• 34E3 - Information element non-existent or not implemented

• 34E4 - Invalid information element contents

59

Appendix B. CAPI 2.0 Error Codes

• 34E5 - Message not compatible with call state

• 34E6 - Recovery on timer expiry

• 34EF - Protocol error, unspecified

• 34FF - Interworking, unspecified

B.2. Internal CAPI errors
These errors are mainly of interest for developers of the CapiSuite core. If you’re a
user, you normally won’t need them.

B.2.1. Informative values (no error)
These values are only warnings and may appear in the extensive CapiSuite log in
messages from the CAPI.

• 0000 - No error, request accepted

• 0001 - NCPI not supported by current protocol, NCPI ignored

• 0002 - Flags not supported by current protocol, flags ignored

• 0003 - Alert already sent by another application

B.2.2. Errors concerning CAPI_REGISTER
These errors may appear when the application starts and mostly indicate problems
with your driver installation.

• 1001 - Too many applications.

• 1002 - Logical Block size too small; must be at least 128 bytes.

• 1003 - Buffer exceeds 64 kbytes.

• 1004 - Message buffer size too small, must be at least 1024 bytes.

• 1005 - Max. number of logical connections not supported.

• 1006 - reserved (unknown error).

• 1007 - The message could not be accepted because of an internal busy condition.

• 1008 - OS Resource error (out of memory?).

60

Appendix B. CAPI 2.0 Error Codes

• 1009 - CAPI not installed.

• 100A - Controller does not support external equipment.

• 100B - Controller does only support external equipment.

B.2.3. Message exchange errors
These errors are really internal: they’re raised if the application calls CAPI in a
wrong way. If they occur, it’s usually a bug which you should tell the CapiSuite
developers.

• 1101 - Illegal application number.

• 1102 - Illegal command or subcommand, or message length less than 12 octets.

• 1103 - The message could not be accepted because of a queue full condition.

• 1104 - Queue is empty.

• 1105 - Queue overflow: a message was lost!!

• 1106 - Unknown notification parameter.

• 1107 - The message could not be accepted because on an internal busy condition.

• 1108 - OS resource error (out of memory?).

• 1109 - CAPI not installed.

• 110A - Controller does not support external equipment.

• 110B - Controller does only support external equipment.

B.2.4. Resource/Coding Errors
The errors described here are issued when the application tries to use a ressource
which isn’t available. These are mostly also bugs in the application. Please tell us.

• 2001 - Message not supported in current state

• 2002 - Illegal Controller / PLCI / NCCI

• 2003 - Out of PLCI

• 2004 - Out of NCCI

• 2005 - Out of LISTEN

• 2007 - llegal message parameter coding

61

Appendix B. CAPI 2.0 Error Codes

B.2.5. Errors concerning requested services
The errors described here are issued when the application tries to request a service
in a wrong way. Again, these are mostly bugs you should tell us.

• 3001 - B1 protocol not supported

• 3002 - B2 protocol not supported

• 3003 - B3 protocol not supported

• 3004 - B1 protocol parameter not supported

• 3005 - B2 protocol parameter not supported

• 3006 - B3 protocol parameter not supported

• 3007 - B protocol combination not supported

• 3008 - NCPI not supported

• 3009 - CIP Value unknown

• 300A - Flags not supported (reserved bits)

• 300B - Facility not supported

• 300C - Data length not supported by current protocol

• 300D - Reset procedure not supported by current protocol

62

	CapiSuite 0.4.5
	Table of Contents
	List of Examples
	Introduction
	1. Welcome to CapiSuite
	capisuite
	Name
	Description

	2. Structure of the manual

	Chapter 1. Getting Started
	1.1. Requirements and installation of CapiSuite
	1.1.1. Requirements
	1.1.1.1. Hardware and drivers
	1.1.1.2. Software

	1.1.2. Installation
	1.1.2.1. Installation from binary packages
	1.1.2.1.1. Installation from RPM packages (SUSE, Fedora, Mandrake & Co.)
	1.1.2.1.2. Installation from other packages

	1.1.2.2. Installation from the source packages
	1.1.2.3. Installation from Subversion

	1.1.3. Updating from previous versions
	1.1.3.1. From 0.4.4 to 0.4.5

	1.2. How CapiSuite works, how it is configured and started
	1.2.1. How does CapiSuite work?
	1.2.2. Configuration of CapiSuite

	capisuite.conf
	Name
	Description
	Options
	1.2.3. Startup of CapiSuite
	commandline options of CapiSuite

	1.3. Features and configuration of the default scripts
	1.3.1. Script features
	1.3.2. How the scripts work
	1.3.3. Script configuration

	fax.conf
	Name
	Description
	The [GLOBAL] section
	The user sections

	answeringmachine.conf
	Name
	Description
	The [GLOBAL] section
	The user sections
	1.3.4. Deleting old files

	1.4. Using CapiSuite together with the default scripts
	1.4.1. Receiving calls
	1.4.2. Doing a remote inquiry
	1.4.3. Sending fax jobs

	capisuitefax
	Name
	Synopsis
	Description
	Options

	Chapter 2. Users Guide
	2.1. Introduction to Python
	2.1.1. Python Basics
	2.1.2. Blocks, Functions and Exceptions
	2.1.3. Working with modules

	2.2. A first look on the incoming and idle scripts
	2.2.1. The incoming script
	2.2.2. The idle script

	2.3. Used file formats
	2.3.1. Format of voice files (inversed ALaw, 8kHz, mono)
	2.3.1.1. Creating ALaw files
	2.3.1.2. Playing ALaw files

	2.3.2. Format of fax files (Structured Fax Files)
	2.3.2.1. Creating a SFF
	2.3.2.2. Viewing / converting from SFF
	2.3.2.3. Color faxes the CFF format

	2.4. Tutorial: writing an incoming script
	2.4.1. Basics and a really dumb answering machine.
	2.4.2. Improving it to a useful (?) state
	2.4.3. Using sensible file names
	2.4.4. Automatic fax recognition and receiving

	2.5. Example for an idle script
	2.6. Structural overview of the default scripts
	2.6.1. incoming.py
	2.6.1.1. function callIncoming
	2.6.1.2. function faxIncoming
	2.6.1.3. function voiceIncoming
	2.6.1.4. function remoteInquiry
	2.6.1.5. function newAnnouncement

	2.6.2. idle.py
	2.6.2.1. function idle
	2.6.2.2. function sendfax
	2.6.2.3. function movejob

	2.6.3. capisuitefax
	2.6.4. cshelpers.py

	2.7. CapiSuite command reference

	Appendix A. Acknowledgements
	Appendix B. CAPI 2.0 Error Codes
	B.1. CAPI errors describing connection problems
	B.1.1. Protocol errors
	B.1.2. ISDN error codes

	B.2. Internal CAPI errors
	B.2.1. Informative values (no error)
	B.2.2. Errors concerning CAPIREGISTER
	B.2.3. Message exchange errors
	B.2.4. Resource/Coding Errors
	B.2.5. Errors concerning requested services

