
DHTML Calendar Widget

Mihai Bazon, <mishoo@infoiasi.ro>

November 5, 2003
calendar version: 0.9.5 “Your favorite time, bis”

$Id: reference.tex,v 1.13 2003/11/05 17:30:21 mishoo Exp $

Contents

1 Overview 2
1.1 How does this thing work? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Project files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Quick startup 3
2.1 Installing a popup calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Installing a flat calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Calendar.setup in detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 The Calendar object overview 6
3.1 Creating a calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Order does matter ;-) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Caching the object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Callback functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 The Calendar object API reference 9
4.1 Calendar constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Useful member variables (properties) . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Public methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.3.1 Calendar.create . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3.2 Calendar.callHandler . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3.3 Calendar.callCloseHandler . . . . . . . . . . . . . . . . . . . . . . . 11
4.3.4 Calendar.hide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3.5 Calendar.setDateFormat . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3.6 Calendar.setTtDateFormat . . . . . . . . . . . . . . . . . . . . . . . 11
4.3.7 Calendar.setDisabledHandler . . . . . . . . . . . . . . . . . . . . . 12
4.3.8 Calendar.setDateStatusHandler . . . . . . . . . . . . . . . . . . . . 12
4.3.9 Calendar.show . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3.10 Calendar.showAt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3.11 Calendar.showAtElement . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3.12 Calendar.setDate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.13 Calendar.setMondayFirst . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.14 Calendar.parseDate . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.15 Calendar.setRange . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Side effects 15

6 Credits 15

1



1 Overview

The DHTML Calendar widget1 is an (HTML) user interface element that gives end-users
a friendly way to select date and time. It works in a web browser. The first versions only
provided support for popup calendars, while starting with version 0.9 it also supports “flat”
display. A “flat” calendar is a calendar that stays visible in the page all the time. In this
mode it could be very useful for “blog” pages and other pages that require the calendar to
be always present.

The calendar is compatible with most popular browsers nowadays. While it’s created
using web standards and it should generally work with any compliant browser, the following
browsers were found to work: Mozilla (the development platform), Netscape 6.0 or better,
all other Gecko-based browsers, Internet Explorer 5.0 or better for Windows2, Opera 73 and
Konqueror 3.1.2 (with pretty much the same dysfunctions as in Opera).

You can find the latest info and version at the calendar homepage:

http://dynarch.com/mishoo/calendar.epl

1.1 How does this thing work?

DHTML is not “another kind of HTML”. It’s merely a naming convention. DHTML refers to
the combination of HTML, CSS, JavaScript and DOM. DOM (Document Object Model) is
a set of interfaces that glues the other three together. In other words, DOM allows dynamic
modification of an HTML page through a program. JavaScript is our programming language,
since that’s what browsers like. CSS is a way to make it look good ;-). So all this soup is
generically known as DHTML.

Using DOM calls, the program dynamically creates a <table> element that contains a
calendar for the given date and then inserts it in the document body. Then it shows this
table at a specified position. Usually the position is related to some element in which the
date needs to be displayed/entered, such as an input field.

By assigning a certain CSS class to the table we can control the look of the calendar
through an external CSS file; therefore, in order to change the colors, backgrounds, rollover
effects and other stuff, you can only change a CSS file—modification of the program itself is
not necessary.

1.2 Project files

Here’s a description of the project files, excluding documentation and example files.

• the main program file (calendar.js). This defines all the logic behind the calendar
widget.

• the CSS files (calendar-*.css). Loading one of them is necessary in order to see the
calendar as intended.

• the language definition files (lang/calendar-*.js). They are plain JavaScript files
that contain all texts that are displayed by the calendar. Loading one of them is
necessary.

• helper functions for quick setup of the calendar (calendar-setup.js). You can do
fine without it, but starting with version 0.9.3 this is the recommended way to setup a
calendar.

1by the term “widget” I understand a single element of user interface. But that’s in Linux world. For
those that did lots of Windows programming the term “control” might be more familiar

2people report that the calendar does not work with IE5/Mac. I don’t have access to a Macintosh,
therefore—sorry—I can’t fix it.

3under Opera 7 the calendar still lacks some functionality, such as keyboard navigation; also Opera doesn’t
seem to allow disabling text selection when one drags the mouse on the page; despite all that, the calendar
is still highly functional under Opera 7 and looks as good as in other supported browsers.
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1.3 License

c© Mihai Bazon, 2002 – 2003, <mishoo@infoiasi.ro>
http://dynarch.com/mishoo/

The calendar is released under the GNU Lesser General Public License. You can read the
entire license text here.

2 Quick startup

Installing the calendar used to be quite a task until version 0.9.3. Starting with 0.9.3 I have
included the file calendar-setup.js whose goal is to assist you to setup a popup or flat
calendar in minutes. You are encouraged to modify this file and not calendar.js if you need
extra customization, but you’re on your own.

First you have to include the needed scripts and style-sheet. Make sure you do this in
your document’s <head> section, also make sure you put the correct paths to the scripts.

<style type="text/css">@import url(calendar-win2k-1.css)</style>
<script type="text/javascript" src="calendar.js"></script>
<script type="text/javascript" src="lang/calendar-en.js"></script>
<script type="text/javascript" src="calendar-setup.js"></script>

2.1 Installing a popup calendar

Now suppose you have the following HTML:

<form ...>
<input type="text" id="data" name="data" />
<button id="trigger">...</button>

</form>

You want the button to popup a calendar widget when clicked? Just insert the following
code immediately after the HTML form:

<script type="text/javascript">
Calendar.setup(
{
inputField : "data", // ID of the input field
ifFormat : "M d, y", // the date format
button : "trigger" // ID of the button

}
);

</script>

The Calendar.setup function, defined in calendar-setup.js takes care of “patching”
the button to display a calendar when clicked. The calendar is by default in single-click
mode and linked with the given input field, so that when the end-user selects a date it will
update the input field with the date in the given format and close the calendar. If you are
a long-term user of the calendar you probably remember that for doing this you needed to
write a couple functions and add an “onclick” handler for the button by hand.

By looking at the example above we can see that the function Calendar.setup receives
only one parameter: a JavaScript object. Further, that object can have lots of properties
that tell to the setup function how would we like to have the calendar. For instance, if we
would like a calendar that closes at double-click instead of single-click we would also include
the following: singleClick:false.

For a list of all supported parameters please see the section 2.3.
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2.2 Installing a flat calendar

Here’s how to configure a flat calendar, using the same Calendar.setup function. First,
you should have an empty element with an ID. This element will act as a container for the
calendar. It can be any block-level element, such as DIV, TABLE, etc. We will use a DIV
in this example.

<div id="calendar-container"></div>

Then there is the JavaScript code that sets up the calendar into the “calendar-container”
DIV. The code can occur anywhere in HTML after the DIV element.

<script type="text/javascript">
function dateChanged(calendar) {
// Beware that this function is called even if the end-user only
// changed the month/year. In order to determine if a date was
// clicked you can use the dateClicked property of the calendar:
if (calendar.dateClicked) {
// OK, a date was clicked, redirect to /yyyy/mm/dd/index.php
var y = calendar.date.getFullYear();
var m = calendar.date.getMonth(); // integer, 0..11
var d = calendar.date.getDate(); // integer, 1..31
// redirect...
window.location = "/" + y + "/" + m + "/" + d + "/index.php";

}
};

Calendar.setup(
{
flat : "calendar-container", // ID of the parent element
flatCallback : dateChanged // our callback function

}
);

</script>

2.3 Calendar.setup in detail

Following there is the complete list of properties interpreted by Calendar.setup. All of them
have default values, so you can pass only those which you would like to customize. Anyway,
you must pass at least one of inputField, displayArea or button, for a popup calendar,
or flat for a flat calendar. Otherwise you will get a warning message saying that there’s
nothing to setup.

property type description default

inputField string The ID of your input field. null

displayArea string This is the ID of a <span>, <div>, or any other
element that you would like to use to display the
current date. This is generally useful only if the
input field is hidden, as an area to display the
date.

null

button string The ID of the calendar “trigger”. This is an ele-
ment (ordinarily a button or an image) that will
dispatch a certain event (usually “click”) to the
function that creates and displays the calendar.

null
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property type description default

eventName string The name of the event that will trigger the cal-
endar. The name should be without the “on”
prefix, such as “click” instead of “onclick”. Vir-
tually all users will want to let this have the de-
fault value (“click”). Anyway, it could be useful
if, say, you want the calendar to appear when the
input field is focused and have no trigger button
(in this case use “focus” as the event name).

“click”

ifFormat string The format string that will be used to enter the
date in the input field. This format will be hon-
ored even if the input field is hidden.

“%Y/%m/%d”

daFormat string Format of the date displayed in the displayArea
(if specified).

“%Y/%m/%d”

singleClick boolean Wether the calendar is in “single-click mode” or
“double-click mode”. If true (the default) the
calendar will be created in single-click mode.

true

disableFunc function A function that receives a JS Date object. It
should return true if that date has to be dis-
abled, false otherwise. DEPRECATED (see
below).

null

dateStatusFunc function A function that receives a JS Date object and
returns a boolean or a string. This function al-
lows one to set a certain CSS class to some date,
therefore making it look different. If it returns
true then the date will be disabled. If it returns
false nothing special happens with the given
date. If it returns a string then that will be
taken as a CSS class and appended to the date
element. If this string is “disabled” then the
date is also disabled (therefore is like returning
true). For more information please also refer to
section 4.3.8.

null

mondayFirst boolean If true (default) then the calendar will display
with Monday being the first day of week. If
false then Sunday will be the first day of week.
This has changed from default false to default
true because the ISO 8601 defines week as start-
ing Monday and this definition is used for com-
puting the week number.

true

weekNumbers boolean If “true” then the calendar will display week
numbers.

true

align string Alignment of the calendar, relative to the refer-
ence element. The reference element is dynami-
cally chosen like this: if a displayArea is specified
then it will be the reference element. Otherwise,
the input field is the reference element. For the
meaning of the alignment characters please sec-
tion 4.3.11.

“Bl”

range array An array having exactly 2 elements, integers. (!)
The first [0] element is the minimum year that
is available, and the second [1] element is the
maximum year that the calendar will allow.

[1900, 2999]

flat string If you want a flat calendar, pass the ID of the
parent object in this property. If not, pass null
here (or nothing at all as null is the default
value).

null
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property type description default

flatCallback function You should provide this function if the calendar
is flat. It will be called when the date in the
calendar is changed with a reference to the cal-
endar object. See section 2.2 for an example of
how to setup a flat calendar.

null

onSelect function If you provide a function handler here then you
have to manage the “click-on-date” event by
yourself. Look in the calendar-setup.js and take
as an example the onSelect handler that you can
see there.

null

onClose function This handler will be called when the calen-
dar needs to close. You don’t need to provide
one, but if you do it’s your responsibility to
hide/destroy the calendar. You’re on your own.
Check the calendar-setup.js file for an example.

null

onUpdate function If you supply a function handler here, it will be
called right after the target field is updated with
a new date. You can use this to chain 2 calen-
dars, for instance to setup a default date in the
second just after a date was selected in the first.

null

date date This allows you to setup an initial date where the
calendar will be positioned to. If absent then the
calendar will open to the today date.

null

showsTime boolean If this is set to true then the calendar will also
allow time selection.

false

timeFormat string Set this to “12” or “24” to configure the way
that the calendar will display time.

“24”

3 The Calendar object overview

Basically you should be able to setup the calendar with the function presented in the previous
section. However, if for some reason Calendar.setup doesn’t provide all the functionality
that you need and you want to tweak into the process of creating and configuring the calendar
“by hand”, then this section is the way to go.

The file calendar.js implements the functionality of the calendar. All (well, almost all)
functions and variables are embedded in the JavaScript object “Calendar”.

You can instantiate a Calendar object by calling the constructor, like this: var cal =
new Calendar(...). We will discuss the parameters later. After creating the object, the
variable cal will contain a reference to it. You can use this reference to access further options
of the calendar, for instance:

cal.weekNumbers = false; // do not display week numbers
cal.showsTime = true; // include a time selector
cal.setDateFormat("%Y.%m.%d %H:%M"); // set this format: 2003.12.31 23:59
cal.setDisabledHandler(function(date, year, month, day) {
// verify date and return true if it has to be disabled
// ‘‘date’’ is a JS Date object, but if you only need the
// year, month and/or day you can get them separately as
// next 3 parameters, as you can see in the declaration
if (year == 2004) {
// disable all dates from 2004
return true;

}
return false;

});

etc. Prior to version 0.9.3 this was the only way to configure it. The Calendar.setup
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function, documented in section 2, basically does the same things (actually more) in order
to setup the calendar, based on the parameters that you provided.

3.1 Creating a calendar

The calendar is created by following some steps (even the function Calendar.setup, de-
scribed in section 2, does the same). While you can skip optional (marked “opt”) steps if
you’re happy with the defaults, please respect the order below.

1. Instantiate a Calendar object. Details about this in section 4.1.

opt Set the weekNumbers property to false if you don’t want the calendar to display week
numbers.

opt Set the showsTime property to true if you want the calendar to also provide a time
selector.

opt Set the time24 property to false if you want the time selector to be in 12-hour format.
Default is 24-hour format. This property only has effect if you also set showsTime to
true.

opt Set the range of years available for selection (see section 4.3.15). The default range is
[1970..2050].

opt Set the getDateStatus property. You should pass here a function that receives a
JavaScript Date object and returns true if the given date should be disabled, false
otherwise (details in section 4.3.7).

opt Set a date format. Your handler function, passed to the calendar constructor, will be
called when a date is selected with a reference to the calendar and a date string in this
format.

2. Create the HTML elements related to the calendar. This step practically puts the
calendar in your HTML page. You simply call Calendar.create(). You can give an
optional parameter if you wanna create a flat calendar (details in section 4.3.1).

opt Initialize the calendar to a certain date, for instance from the input field.

3. Show the calendar (details in section 4.3.9).

3.2 Order does matter ;-)

As you could see in the previous section, there are more steps to be followed in order to
setup the calendar. This happens because there are two different things that need to be
accomplished: first there is the JavaScript object, that is created with new Calendar(...).
Secondly there are the HTML elements that actually lets you see and manipulate the calendar.

[ Those that did UI4 programming, no matter in what language and on what platform, may

be familiar with this concept. First there is the object in memory that lets you manipulate the UI

element, and secondly there is the UI element (known as “control”, “window”, “widget”, etc.), also

in memory but you don’t usually access it directly. ]

By instantiating the calendar we create the JavaScript object. It lets us configure some
properties and it also knows how to create the UI element (the HTML elements actually)
that will eventually be what the end-user sees on screen. Creation of the HTML element
is accomplished by the function Calendar.create. It knows how to create popup or flat
calendars. This function is described in section 4.3.1.

Some properties need to be set prior to creating the HTML elements, because otherwise
they wouldn’t have any effect. Such a property is weekNumbers—it has the default value
“true”, and if you don’t want the calendar to display the week numbers you have to set it
to false. If, however, you do that after calling Calendar.create the calendar would still

4user interface
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display the week numbers, because the HTML elements are already created (including the
<td>-s in the <table> element that should contain the week numbers). For this reason the
order of the steps above is important.

Another example is when you want to show the calendar. The “create” function does
create the HTML elements, but they are initially hidden (have the style “display: none”)
unless the calendar is a flat calendar that should be always visible in the page. Obviously,
the Calendar.show function should be called after calling Calendar.create.

3.3 Caching the object

Suppose the end-user has popped up a calendar and selects a date. The calendar then closes.
What really happens now?

There are two approaches. The first (used in very old versions of the calendar) was to
drop completely the Calendar object and when the end-user pops up the calendar again to
create another one. This approach is bad for more reasons:

• creating the JavaScript object and HTML elements is time-consuming

• we may loose some end-user preferences (i.e. he might prefer to have Monday for the
first day of week and probably already clicked it the first time when the calendar was
opened, but now he has to do it again)

The second approach, implemented by the Calendar.setup function, is to cache the
JavaScript object. It does this by checking the global variable window.calendar and if it is
not null it assumes it is the created Calendar object. When the end-user closes the calendar,
our code will only call “hide” on it, therefore keeping the JavaScript object and the HTML
elements in place.

CAVEAT: Since time selection support was introduced, this “object caching” mecha-
nism has the following drawback: if you once created the calendar with the time selection
support, then other items that may not require this functionality will still get a calendar with
the time selection support enabled. And reciprocal. ;-) Hopefully this will be corrected in a
later version, but for now it doesn’t seem such a big problem.

3.4 Callback functions

You might rightfully wonder how is the calendar related to the input field? Who tells it that
it has to update that input field when a date is selected, or that it has to jump to that URL
when a date is clicked in flat mode?

All this magic is done through callback functions. The calendar doesn’t know anything
about the existence of an input field, nor does it know where to redirect the browser when a
date is clicked in flat mode. It just calls your callback when a particular event is happening,
and you’re responsible to handle it from there. For a general purpose library I think this is
the best model of making a truly reusable thing.

The calendar supports the following user callbacks:

onSelect — this gets called when the end-user changes the date in the calendar. Documented in
section 4.1.

onClose — this gets called when the calendar should close. It’s user’s responsibility to close the
calendar. Details in section 4.1.

getDateStatus — this function gets called for any day in a month, just before displaying the month.
It is called with a JavaScript Date object and should return true if that date should be
disabled, false if it’s an ordinary date and no action should be taken, or it can return
a string in which case the returned value will be appended to the element’s CSS class
(this way it provides a powerful way to make some dates “special”, i.e. highlight them
differently). Details in section 4.3.8.
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4 The Calendar object API reference

4.1 Calendar constructor

Synopsis:

var calendar = Calendar(mondayFirst, date, onSelect, onClose);

Parameters are as follows:

mondayFirst — boolean, if it’s true the calendar will have Monday as first day of week, if false
weeks start on Sunday.

date — a JavaScript Date object or null. If null is passed then the calendar will default
to today date. Otherwise it will initialize on the given date.

onSelect — your callback for the “onChange” event. See above.

onClose — your callback for the “onClose” event. See above.

The onSelect event

Here is a typical implementation of this function:

function onSelect(calendar, date) {
var input_field = document.getElementById("date");
input_field.value = date;

};

date is in the format selected with calendar.setDateFormat (see section 4.3.5). This code
simply updates the input field. If you want the calendar to be in single-click mode then you
should also close the calendar after you updated the input field, so we come to the following
version:

function onSelect(calendar, date) {
var input_field = document.getElementById("date");
input_field.value = date;
if (calendar.dateClicked) {
calendar.callCloseHandler(); // this calls "onClose" (see above)

}
};

Note that we checked the member variable dateClicked and only hide the calendar if it’s
true. If this variable is false it means that no date was actually selected, but the user only
changed the month/year using the navigation buttons or the menus. We don’t want to hide
the calendar in that case.

The onClose event

This event is triggered when the calendar should close. It should hide or destroy the calendar
object—the calendar itself just triggers the event, but it won’t close itself.

A typical implementation of this function is the following:

function onClose(calendar) {
calendar.hide();
// or calendar.destroy();

};
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4.2 Useful member variables (properties)

After creating the Calendar object you can access the following properties:

• date — is a JavaScript Date object. It will always reflect the date shown in the calendar
(yes, even if the calendar is hidden).

• isPopup — if this is true then the current Calendar object is a popup calendar. Oth-
erwise (false) we have a flat calendar. This variable is set from Calendar.create and
has no meaning before this function was called.

• dateClicked — particularly useful in the onSelect handler, this variable tells us if
a date was really clicked. That’s because the onSelect handler is called even if the
end-user only changed the month/year but did not select a date. We don’t want to
close the calendar in that case.

• weekNumbers — if true (default) then the calendar displays week numbers. If you don’t
want week numbers you have to set this variable to false before calling Calendar.create.

• showsTime – if you set this to true (it is false by default) then the calendar will also
include a time selector.

• time24 – if you set this to false then the time selector will be in 12-hour format. It
is in 24-hour format by default.

• mondayFirst — if true then the calendar uses Monday as first day of week, otherwise
Sunday. This variable is set from constructor, but you still have a chance to modify it
before calling Calendar.create.

There are lots of other member variables, but one should access them only through mem-
ber functions so I won’t document them here.

4.3 Public methods

4.3.1 Calendar.create

This function creates the afferent HTML elements that are needed to display the calendar.
You should call it after setting the calendar properties. Synopsis:

calendar.create(); // creates a popup calendar
// -- or --

calendar.create(document.getElementById(parent_id)); // makes a flat calendar

It can create a popup calendar or a flat calendar. If the “parent” argument is present (it
should be a reference—not ID—to an HTML element) then a flat calendar is created and it
is inserted in the given element.

At any moment, given a reference to a calendar object, we can inspect if it’s a popup or
a flat calendar by checking the boolean member variable isPopup:

if (calendar.isPopup) {
// this is a popup calendar

} else {
// this is a flat calendar

}

4.3.2 Calendar.callHandler

This function calls the first user callback (the onSelect handler) with the required parame-
ters.

10



4.3.3 Calendar.callCloseHandler

This function calls the second user callback (the onClose handler). It’s useful when you
want to have a “single-click” calendar—just call this in your onSelect handler, if a date was
clicked.

4.3.4 Calendar.hide

Call this function to hide the calendar. The calendar object and HTML elements will not be
destroyed, thus you can later call one of the show functions on the same element.

4.3.5 Calendar.setDateFormat

This function configures the format in which the calendar reports the date to your “onSelect”
handler. Call it like this:

calendar.setDateFormat("%y/%m/%d");

As you can see, it receives only one parameter, the required format. The magic characters
are the following:

%a abbreviated weekday name
%A full weekday name
%b abbreviated month name
%B full month name
%C century number
%d the day of the month ( 00 .. 31 )
%e the day of the month ( 0 .. 31 )
%H hour ( 00 .. 23 )
%I hour ( 01 .. 12 )
%j day of the year ( 000 .. 366 )
%k hour ( 0 .. 23 )
%l hour ( 1 .. 12 )
%m month ( 01 .. 12 )
%M minute ( 00 .. 59 )
%n a newline character
%p “PM” or “AM”
%P “pm” or “am”
%S second ( 00 .. 59 )
%s number of seconds since Epoch (since Jan 01 1970 00:00:00 UTC)
%t a tab character

%U, %W, %V the week number5

%u the day of the week ( 1 .. 7, 1 = MON )
%w the day of the week ( 0 .. 6, 0 = SUN )
%y year without the century ( 00 .. 99 )
%Y year including the century ( ex. 1979 )
%% a literal % character

4.3.6 Calendar.setTtDateFormat

Has the same prototype as Calendar.setDateFormat, but refers to the format of the date
displayed in the “status bar” when the mouse is over some date.

5There are more algorithms for computing the week number. All three specifiers currently implement the
same one, as defined by ISO 8601: “the week 01 is the week that has the Thursday in the current year, which
is equivalent to the week that contains the fourth day of January. Weeks start on Monday.
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4.3.7 Calendar.setDisabledHandler

This function allows you to specify a callback function that checks if a certain date must be
disabled by the calendar. You are responsible to write the callback function. Synopsis:

function disallowDate(date) {
// date is a JS Date object
if ( date.getFullYear() == 2003 &&

date.getMonth() == 6 /* July, it’s zero-based */ &&
date.getDate() == 5 ) {

return true; // disable July 5 2003
}
return false; // enable other dates

};

calendar.setDisabledHandler(disallowDate);

If you change this function in “real-time”, meaning, without creating a new calendar,
then you have to call calendar.refresh() to make it redisplay the month and take into
account the new disabledHandler. Calendar.setup does this, so you have no such trouble
with it.

Note that disallowDate should be very fast, as it is called for each date in the month.
Thus, it gets called, say, 30 times before displaying the calendar, and 30 times when the
month is changed. Tests I’ve done so far show that it’s still good, but in the future I might
switch it to a different design (for instance, to call it once per month and to return an array
of dates that must be disabled).

This function should be considered deprecated in the favor of Calendar.setDateStatusHandler,
described below.

4.3.8 Calendar.setDateStatusHandler

This function obsoletes Calendar.setDisabledHandler. You call it with a function param-
eter, but this function can return a boolean or a string. If the return value is a boolean (true
or false) then it behaves just like setDisabledHandler, therefore disabling the date if the
return value is true.

If the returned value is a string then the given date will gain an additional CSS class,
namely the returned value. You can use this to highlight some dates in some way. Note
that you are responsible for defining the CSS class that you return. If you return the string
“disabled” then that date will be disabled, just as if you returned true.

Here is a simple scenario that shows what you can do with this function. The following
should be present in some of your styles, or in the document head in a STYLE tag (but put
it after the place where the calendar styles were loaded):

.special { background-color: #000; color: #fff; }

And you would use the following code before calling Calendar.create():

// this table holds your special days, so that we can automatize
// things a bit:
var SPECIAL_DAYS = {

0 : [ 13, 24 ], // special days in January
2 : [ 1, 6, 8, 12, 18 ], // special days in March
8 : [ 21, 11 ], // special days in September
11 : [ 25, 28 ] // special days in December

};

// this function returns true if the passed date is special
function dateIsSpecial(year, month, day) {

var m = SPECIAL_DAYS[month];
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if (!m) return false;
for (var i in m) if (m[i] == day) return true;
return false;

}

// this is the actual date status handler. Note that it receives the
// date object as well as separate values of year, month and date, for
// your confort.
function dateStatusHandler(date, y, m, d) {

if (dateIsSpecial(y, m, d)) return ‘‘special’’;
else return false;
// return true above if you want to disable other dates

}

// configure it to the calendar
calendar.setDateStatusHandler(dateStatusHandler);

The above code adds the “special” class name to some dates that are defined in the
SPECIAL DAYS table. Other dates will simply be displayed as default, enabled.

4.3.9 Calendar.show

Call this function do show the calendar. It basically sets the CSS “display” property to
“block”. It doesn’t modify the calendar position.

This function only makes sense when the calendar is in popup mode.

4.3.10 Calendar.showAt

Call this to show the calendar at a certain (x, y) position. Prototype:

calendar.showAt(x, y);

The parameters are absolute coordinates relative to the top left corner of the page, thus they
are page coordinates not screen coordinates.

After setting the given coordinates it calls Calendar.show. This function only makes sense
when the calendar is in popup mode.

4.3.11 Calendar.showAtElement

This function is useful if you want to display the calendar near some element. You call it like
this:

calendar.showAtElement(element, align);

where element is a reference to your element (for instance it can be the input field that
displays the date) and align is an optional parameter, of type string, containing one or two
characters. For instance, if you pass "Br" as align, the calendar will appear below the element
and with its right margin continuing the element’s right margin.

As stated above, align may contain one or two characters. The first character dictates the
vertical alignment, relative to the element, and the second character dictates the horizontal
alignment. If the second character is missing it will be assumed "l" (the left margin of the
calendar will be at the same horizontal position as the left margin of the element).

The characters given for the align parameters are case sensitive. This function only
makes sense when the calendar is in popup mode. After computing the position it uses
Calendar.showAt to display the calendar there.
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Vertical alignment The first character in “align” can take one of the following values:

• T — completely above the reference element (bottom margin of the calendar aligned to
the top margin of the element).

• t — above the element but may overlap it (bottom margin of the calendar aligned to
the bottom margin of the element).

• c — the calendar displays vertically centered to the reference element. It might overlap
it (that depends on the horizontal alignment).

• b — below the element but may overlap it (top margin of the calendar aligned to the
top margin of the element).

• B — completely below the element (top margin of the calendar aligned to the bottom
margin of the element).

Horizontal alignment The second character in “align” can take one of the following
values:

• L — completely to the left of the reference element (right margin of the calendar aligned
to the left margin of the element).

• l — to the left of the element but may overlap it (left margin of the calendar aligned
to the left margin of the element).

• c — horizontally centered to the element. Might overlap it, depending on the vertical
alignment.

• r — to the right of the element but may overlap it (right margin of the calendar aligned
to the right margin of the element).

• R — completely to the right of the element (left margin of the calendar aligned to the
right margin of the element).

Default values If the “align” parameter is missing the calendar will choose “Bl”. This
resembles the behavior of older versions (prior to 0.9.3) which did not support custom align-
ment.

4.3.12 Calendar.setDate

Receives a JavaScript Date object. Sets the given date in the calendar. If the calendar is
visible the new date is displayed immediately.

calendar.setDate(new Date()); // go today

4.3.13 Calendar.setMondayFirst

Changes the first day of week. If the parameter is true then Monday will be the first day of
week, otherwise Sunday.

calendar.setMondayFirst(false); // use Sunday

4.3.14 Calendar.parseDate

Use this function to parse a date given as string and to move the calendar to that date.
The algorithm tries to parse the date according to the format that was previously set

with Calendar.setDateFormat; if that fails, it still tries to get some valid date out of it (it
doesn’t read your thoughts, though).

calendar.parseDate("2003/07/06");
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4.3.15 Calendar.setRange

Sets the range of years that are allowed in the calendar. Synopsis:

calendar.setRange(1970, 2050);

5 Side effects

The calendar code was intentionally embedded in an object to make it have as less as possible
side effects. However, there are some—not harmful, after all. Here is a list of side effects;
you can count they already happened after calendar.js was loaded.

1. The global variable window.calendar will be set to null. This variable is used by the
calendar code, especially when doing drag & drop for moving the calendar. In the
future I might get rid of it, but for now it didn’t harm anyone.

2. The JavaScript Date object is modified. We add some properties and functions that
are very useful to our calendar. It made more sense to add them directly to the Date
object than to the calendar itself. Complete list:

(a) Date. MD = new Array(31,28,31,30,31,30,31,31,30,31,30,31);

(b) Date.SECOND = 1000 /* milliseconds */;

(c) Date.MINUTE = 60 * Date.SECOND;

(d) Date.HOUR = 60 * Date.MINUTE;

(e) Date.DAY = 24 * Date.HOUR;

(f) Date.WEEK = 7 * Date.DAY;

(g) Date.prototype.getMonthDays(month) — returns the number of days of the
given month, or of the current date object if no month was given.

(h) Date.prototype.getWeekNumber() — returns the week number of the date in the
current object.

(i) Date.prototype.equalsTo(other date) — compare the current date object with
other date and returns true if the dates are equal. It ignores time.

(j) Date.prototype.print(format) — returns a string with the current date object
represented in the given format. It implements the format specified in section
4.3.5.

6 Credits

The following people either sponsored, donated money to the project or bought commercial
licenses (listed in reverse chronological order). Your name could be here too! If you wish to
sponsor the project (for instance request a feature and pay me for implementing it) or donate
some money please please contact me at mishoo@infoiasi.ro.

• Himanshukumar Shah

• Seyhan Ersoy (http://www.oocgi.com)

• Jon Stokkeland (http://www.sauen.com)

Thank you!
— mishoo@infoiasi.ro
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